返回介绍

人工智能的新黄金时代

发布于 2024-01-27 20:58:56 字数 1098 浏览 0 评论 0 收藏 0

在20世纪50年代,人工智能这门学科正式成立,此时,人类雄心勃勃,对人工智能抱着非常乐观的态度。最初的成功,让人们看到了计算机可以进行简单的博弈、证明定理,因此,一些人相信,在十年左右的时间内,人类级别的人工智能将会出现。

但是,实践证明:发展人工智能困难重重,进展一度停滞不前。20世纪70年代,人们在学术界挑战人工智能的雄心遭到了毁灭性的打击。接下来,人们削减了人工智能研究经费,对人工智能的兴趣消失殆尽。

机器那冰冷的逻辑,绝对的1和0,看起来似乎永远不能够实现细致入微的、有机的,有时甚至模糊的生物大脑思维过程。

在一段时间内,人类未能独具匠心,百尺竿头,更进一步,将机器智能探索带出其既定轨迹。在此之后,研究人员灵光一现,尝试通过复制生物大脑工作的机制,来构建人工大脑?真正的大脑具有神经元,而不是逻辑门。真正人脑具有更优雅更有机的推理,而不是冰冷的、非黑即白的、绝对的传统算法。

蜜蜂或鸽子大脑的简单性与其能够执行复杂任务的巨大反差,这一点启发了科学家。就是这零点几克的大脑,看起来就能够做许多事情,如导航、适应风向、识别食物和捕食者、快速地决定是战斗还是逃跑。当今的计算机拥有大量的廉价资源,能够模仿和改进这些大脑吗?一只蜜蜂大约有950 000个神经元,今天的计算机,具有G比特和T比特的资源,能够表现得比蜜蜂更优秀吗?

但是,如果使用传统的方法来求解问题,那么即使计算机拥有巨大的存储和超快的处理器,也无法实现鸟和蜜蜂使用相对微小的大脑所做的事情。

受到仿生智能计算的驱动,神经网络(Netural Network)出现了,并且神经网络从此成为在人工智能领域中最强大、最有用的方法之一。今天,谷歌的Deepmind以神经网络为基础,能够做一些非常奇妙的事情,如让计算机学习如何玩视频游戏,并且在人类历史上第一次在极其变化多端的围棋博弈中击败了世界级的大师。如今,神经网络已经成为了日常技术的核心,例如自动车牌号码识别、解码手写的邮政编码。

本书所探讨的就是神经网络,让你了解神经网络如何工作,帮你制作出自己的神经网络,训练神经网络来识别人类的手写字符。如果使用传统的方法来执行这个任务,那么将是非常困难的。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文