数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
六、训练集、验证集、测试集
6.1 训练集
- 训练集用于训练模型。理论上训练集越大越好。
6.2 验证集
- 大多数机器学习算法具有超参数,超参数的值无法通过学习算法拟合出来(比如正则化项的系数、控制模型容量的参数 )。
- 为了解决这个问题,可以引入验证集。将训练数据分成两个不相交的子集:训练集用于学习模型,验证集用于更新超参数。
- 通常要求验证集足够大。如果验证集很小,那么模型的超参数可能就记住了一个小验证集里的样本,模型将对验证集严重过拟合。
- 验证集通常会低估泛化误差。因此当超参数优化完成后,需要通过测试集来估计泛化误差。
6.3 测试集
测试集用于评估模型的泛化误差。理论上测试集越大,则模型的泛化误差评估的越准确。
测试集中的样本一定不能是训练样本。如果将训练样本放入测试集中,则会低估泛化误差。
测试集 vs 验证集:
测试集通常用于对模型的预测能力进行评估,它提供了模型预测能力的无偏估计。
如果你不需要对模型预测能力的无偏估计,则不需要测试集。
验证集用于超参数的选择,它无法提供模型预测能力的有偏估计。
因为模型依赖于超参数,而超参数依赖于验证集。因此验证集参与了模型的构建,这意味着模型已经考虑了验证集的信息。
6.4 拆分
对于小批量数据,数据的拆分的常见比例为:
- 如果未设置验证集,则将数据三七分:70% 的数据用作训练集、30% 的数据用作测试集。
- 如果设置验证集,则将数据划分为:60% 的数据用作训练集、20%的数据用过验证集、20% 的数据用作测试集。
对于大批量数据,验证集和测试集占总数据的比例会更小。
对于百万级别的数据,其中1万条作为验证集、1万条作为测试集即可。
验证集的目的就是验证不同的超参数;测试集的目的就是比较不同的模型。
- 一方面它们要足够大,才足够评估超参数、模型。
- 另一方面,如果它们太大,则会浪费数据(验证集和训练集的数据无法用于训练)。
在
k
折交叉验证中:先将所有数据拆分成k
份,然后其中1
份作为测试集,其他k-1
份作为训练集。这里并没有验证集来做超参数的选择。所有测试集的测试误差的均值作为模型的预测能力的一个估计。
使用
k
折交叉的原因是:样本集太小。如果选择一部分数据来训练,则有两个问题:- 训练数据的分布可能与真实的分布有偏离。
k
折交叉让所有的数据参与训练,会使得这种偏离得到一定程度的修正。 - 训练数据太少,容易陷入过拟合。
k
折交叉让所有数据参与训练,会一定程度上缓解过拟合。
- 训练数据的分布可能与真实的分布有偏离。
6.5 分布不匹配
深度学习时代,经常会发生:训练集和验证集、测试集的数据分布不同。
如:训练集的数据可能是从网上下载的高清图片,测试集的数据可能是用户上传的、低像素的手机照片。
- 必须保证验证集、测试集的分布一致,它们都要很好的代表你的真实应用场景中的数据分布。
- 训练数据可以与真实应用场景中的数据分布不一致,因为最终关心的是在模型真实应用场景中的表现。
如果发生了数据不匹配问题,则可以想办法让训练集的分布更接近验证集。
一种做法是:收集更多的、分布接近验证集的数据作为训练集合。
另一种做法是:人工合成训练数据,使得它更接近验证集。
该策略有一个潜在问题:你可能只是模拟了全部数据空间中的一小部分。导致你的模型对这一小部分过拟合。
当训练集和验证集、测试集的数据分布不同时,有以下经验原则:
确保验证集和测试集的数据来自同一分布。
因为需要使用验证集来优化超参数,而优化的最终目标是希望模型在测试集上表现更好。
确保验证集和测试集能够反映未来得到的数据,或者最关注的数据。
确保数据被随机分配到验证集和测试集上。
当训练集和验证集、测试集的数据分布不同时,分析偏差和方差的方式有所不同。
如果训练集和验证集的分布一致,那么当训练误差和验证误差相差较大时,我们认为存在很大的方差问题。
如果训练集和验证集的分布不一致,那么当训练误差和验证误差相差较大时,有两种原因:
- 第一个原因:模型只见过训练集数据,没有见过验证集的数据导致的,是数据不匹配的问题。
- 第二个原因:模型本来就存在较大的方差。
为了弄清楚原因,需要将训练集再随机划分为:
训练-训练集
、训练-验证集
。这时候,训练-训练集
、训练-验证集
是同一分布的。- 模型在
训练-训练集
和训练-验证集
上的误差的差距代表了模型的方差。 - 模型在
训练-验证集
和 验证集上的误差的差距代表了数据不匹配问题的程度。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论