文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
比较
比较我们的结果和上面:
df
# rows | 100 | 1000 | 10000 | ||||||
---|---|---|---|---|---|---|---|---|---|
# cols | 20 | 100 | 1000 | 20 | 100 | 1000 | 20 | 100 | 1000 |
Normal Eqns- Naive | 0.001276 | 0.003634 | NaN | 0.000960 | 0.005172 | 0.293126 | 0.002226 | 0.021248 | 1.164655 |
Normal Eqns- Cholesky | 0.001660 | 0.003958 | NaN | 0.001665 | 0.004007 | 0.093696 | 0.001928 | 0.010456 | 0.399464 |
QR Factorization | 0.002174 | 0.006486 | NaN | 0.004235 | 0.017773 | 0.213232 | 0.019229 | 0.116122 | 2.208129 |
SVD | 0.003880 | 0.021737 | NaN | 0.004672 | 0.026950 | 1.280490 | 0.018138 | 0.130652 | 3.433003 |
Scipy lstsq | 0.004338 | 0.020198 | NaN | 0.004320 | 0.021199 | 1.083804 | 0.012200 | 0.088467 | 2.134780 |
来自 Trefethen(第 84 页):
正规方程式/ Cholesky 在生效时速度最快。 Cholesky 只能用于对称正定矩阵。 此外,对于具有高条件数或具有低秩的矩阵,正规方程/ Cholesky 是不稳定的。
数值分析师推荐通过 QR 进行线性回归,作为多年的标准方法。 它自然,优雅,适合“日常使用”。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论