返回介绍

solution / 0300-0399 / 0377.Combination Sum IV / README_EN

发布于 2024-06-17 01:04:01 字数 4170 浏览 0 评论 0 收藏 0

377. Combination Sum IV

中文文档

Description

Given an array of distinct integers nums and a target integer target, return _the number of possible combinations that add up to_ target.

The test cases are generated so that the answer can fit in a 32-bit integer.

 

Example 1:

Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.

Example 2:

Input: nums = [9], target = 3
Output: 0

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • All the elements of nums are unique.
  • 1 <= target <= 1000

 

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

Solutions

Solution 1

class Solution:
  def combinationSum4(self, nums: List[int], target: int) -> int:
    f = [1] + [0] * target
    for i in range(1, target + 1):
      for x in nums:
        if i >= x:
          f[i] += f[i - x]
    return f[target]
class Solution {
  public int combinationSum4(int[] nums, int target) {
    int[] f = new int[target + 1];
    f[0] = 1;
    for (int i = 1; i <= target; ++i) {
      for (int x : nums) {
        if (i >= x) {
          f[i] += f[i - x];
        }
      }
    }
    return f[target];
  }
}
class Solution {
public:
  int combinationSum4(vector<int>& nums, int target) {
    int f[target + 1];
    memset(f, 0, sizeof(f));
    f[0] = 1;
    for (int i = 1; i <= target; ++i) {
      for (int x : nums) {
        if (i >= x && f[i - x] < INT_MAX - f[i]) {
          f[i] += f[i - x];
        }
      }
    }
    return f[target];
  }
};
func combinationSum4(nums []int, target int) int {
  f := make([]int, target+1)
  f[0] = 1
  for i := 1; i <= target; i++ {
    for _, x := range nums {
      if i >= x {
        f[i] += f[i-x]
      }
    }
  }
  return f[target]
}
function combinationSum4(nums: number[], target: number): number {
  const f: number[] = new Array(target + 1).fill(0);
  f[0] = 1;
  for (let i = 1; i <= target; ++i) {
    for (const x of nums) {
      if (i >= x) {
        f[i] += f[i - x];
      }
    }
  }
  return f[target];
}
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var combinationSum4 = function (nums, target) {
  const f = new Array(target + 1).fill(0);
  f[0] = 1;
  for (let i = 1; i <= target; ++i) {
    for (const x of nums) {
      if (i >= x) {
        f[i] += f[i - x];
      }
    }
  }
  return f[target];
};
public class Solution {
  public int CombinationSum4(int[] nums, int target) {
    int[] f = new int[target + 1];
    f[0] = 1;
    for (int i = 1; i <= target; ++i) {
      foreach (int x in nums) {
        if (i >= x) {
          f[i] += f[i - x];
        }
      }
    }
    return f[target];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文