设置开发和测试集
- 开发集和测试集的定义
- 开发集和测试集应该服从同一分布
- 开发集和测试集应该有多大?
- 使用单值评估指标进行优化
- 优化指标和满意度指标
- 通过开发集和度量指标加速迭代
- 何时修改开发集、测试集和指标
- 小结:建立开发集和测试集
基本误差分析
- 快速构建并迭代你的第一个系统
- 误差分析:根据开发集样本评估想法
- 在误差分析时并行评估多个想法
- 清洗误标注的开发集和测试集样本
- 将大型开发集拆分为两个子集,专注其一
- Eyeball 和 Blackbox 开发集该设置多大?
- 小结:基础误差分析
偏差和方差
学习曲线
与人类水平的表现相比
不同发行版的培训和测试
调试推理算法
端到端学习
按零件进行误差分析
总结
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
小结:建立开发集和测试集
- 被选择作为开发集和测试集的数据,应当与你未来计划获取并对其进行良好处理的数据有着相同的分布,而不一定和训练集的数据分布一致。
- 开发集和测试集的分布应当尽可能一致。
- 为你的团队选择一个单值评估指标进行优化。当需要考虑多项目标时,不妨将它们整合到一个表达式里(比如对多个误差指标取平均),或者设定满意度指标和优化指标。
- 机器学习是一个高度迭代的过程:在出现最终令人满意的方案之前,你可能要尝试很多想法。
- 拥有开发集、测试集和单值评估指标可以帮助你快速评估一个算法,从而加速迭代进程。
- 当你要探索一个全新的应用时,尽可能在一周内建立你的开发集、测试集和评估指标;而在已经相对成熟的应用上,可以考虑花费更长的时间来执行这些工作。
- 传统的 70% / 30% 训练集/测试集划分对于大规模数据并不适用,实际上,开发集和测试集的比例会远低于 30%.
- 开发集的规模应当大到能够检测出算法精度的细微改变,但也不需要太大;测试集的规模应该大到能够使你能对系统的最终性作出一个充分的估计。
- 当开发集和评估指标对于团队已经不能提供一个正确的导向时,尽快修改它们:(i) 如果算法在开发集上过拟合,则需要获取更多的开发集数据。(ii) 如果开发集与测试集的数据分布和实际数据分布不同,则需要获取新的开发集和测试集。 (iii) 如果评估指标无法对最重要的任务目标进行度量,则需要修改评估指标。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论