返回介绍

solution / 0900-0999 / 0928.Minimize Malware Spread II / README_EN

发布于 2024-06-17 01:03:33 字数 8239 浏览 0 评论 0 收藏 0

928. Minimize Malware Spread II

中文文档

Description

You are given a network of n nodes represented as an n x n adjacency matrix graph, where the ith node is directly connected to the jth node if graph[i][j] == 1.

Some nodes initial are initially infected by malware. Whenever two nodes are directly connected, and at least one of those two nodes is infected by malware, both nodes will be infected by malware. This spread of malware will continue until no more nodes can be infected in this manner.

Suppose M(initial) is the final number of nodes infected with malware in the entire network after the spread of malware stops.

We will remove exactly one node from initial, completely removing it and any connections from this node to any other node.

Return the node that, if removed, would minimize M(initial). If multiple nodes could be removed to minimize M(initial), return such a node with the smallest index.

 

Example 1:

Input: graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
Output: 0

Example 2:

Input: graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
Output: 1

Example 3:

Input: graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
Output: 1

 

Constraints:

  • n == graph.length
  • n == graph[i].length
  • 2 <= n <= 300
  • graph[i][j] is 0 or 1.
  • graph[i][j] == graph[j][i]
  • graph[i][i] == 1
  • 1 <= initial.length < n
  • 0 <= initial[i] <= n - 1
  • All the integers in initial are unique.

Solutions

Solution 1

class Solution:
  def minMalwareSpread(self, graph: List[List[int]], initial: List[int]) -> int:
    def find(x):
      if p[x] != x:
        p[x] = find(p[x])
      return p[x]

    def union(a, b):
      pa, pb = find(a), find(b)
      if pa != pb:
        size[pb] += size[pa]
        p[pa] = pb

    n = len(graph)
    p = list(range(n))
    size = [1] * n
    clean = [True] * n
    for i in initial:
      clean[i] = False
    for i in range(n):
      if not clean[i]:
        continue
      for j in range(i + 1, n):
        if clean[j] and graph[i][j] == 1:
          union(i, j)
    cnt = Counter()
    mp = {}
    for i in initial:
      s = {find(j) for j in range(n) if clean[j] and graph[i][j] == 1}
      for root in s:
        cnt[root] += 1
      mp[i] = s

    mx, ans = -1, 0
    for i, s in mp.items():
      t = sum(size[root] for root in s if cnt[root] == 1)
      if mx < t or mx == t and i < ans:
        mx, ans = t, i
    return ans
class Solution {
  private int[] p;
  private int[] size;

  public int minMalwareSpread(int[][] graph, int[] initial) {
    int n = graph.length;
    p = new int[n];
    size = new int[n];
    for (int i = 0; i < n; ++i) {
      p[i] = i;
      size[i] = 1;
    }
    boolean[] clean = new boolean[n];
    Arrays.fill(clean, true);
    for (int i : initial) {
      clean[i] = false;
    }
    for (int i = 0; i < n; ++i) {
      if (!clean[i]) {
        continue;
      }
      for (int j = i + 1; j < n; ++j) {
        if (clean[j] && graph[i][j] == 1) {
          union(i, j);
        }
      }
    }
    int[] cnt = new int[n];
    Map<Integer, Set<Integer>> mp = new HashMap<>();
    for (int i : initial) {
      Set<Integer> s = new HashSet<>();
      for (int j = 0; j < n; ++j) {
        if (clean[j] && graph[i][j] == 1) {
          s.add(find(j));
        }
      }
      for (int root : s) {
        cnt[root] += 1;
      }
      mp.put(i, s);
    }
    int mx = -1;
    int ans = 0;
    for (Map.Entry<Integer, Set<Integer>> entry : mp.entrySet()) {
      int i = entry.getKey();
      int t = 0;
      for (int root : entry.getValue()) {
        if (cnt[root] == 1) {
          t += size[root];
        }
      }
      if (mx < t || (mx == t && i < ans)) {
        mx = t;
        ans = i;
      }
    }
    return ans;
  }

  private int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }

  private void union(int a, int b) {
    int pa = find(a);
    int pb = find(b);
    if (pa != pb) {
      size[pb] += size[pa];
      p[pa] = pb;
    }
  }
}
class Solution {
public:
  vector<int> p;
  vector<int> size;

  int minMalwareSpread(vector<vector<int>>& graph, vector<int>& initial) {
    int n = graph.size();
    p.resize(n);
    size.resize(n);
    for (int i = 0; i < n; ++i) p[i] = i;
    fill(size.begin(), size.end(), 1);
    vector<bool> clean(n, true);
    for (int i : initial) clean[i] = false;
    for (int i = 0; i < n; ++i) {
      if (!clean[i]) continue;
      for (int j = i + 1; j < n; ++j)
        if (clean[j] && graph[i][j] == 1) merge(i, j);
    }
    vector<int> cnt(n, 0);
    unordered_map<int, unordered_set<int>> mp;
    for (int i : initial) {
      unordered_set<int> s;
      for (int j = 0; j < n; ++j)
        if (clean[j] && graph[i][j] == 1) s.insert(find(j));
      for (int e : s) ++cnt[e];
      mp[i] = s;
    }
    int mx = -1, ans = 0;
    for (auto& [i, s] : mp) {
      int t = 0;
      for (int root : s)
        if (cnt[root] == 1)
          t += size[root];
      if (mx < t || (mx == t && i < ans)) {
        mx = t;
        ans = i;
      }
    }
    return ans;
  }

  int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
  }

  void merge(int a, int b) {
    int pa = find(a), pb = find(b);
    if (pa != pb) {
      size[pb] += size[pa];
      p[pa] = pb;
    }
  }
};
func minMalwareSpread(graph [][]int, initial []int) int {
  n := len(graph)
  p := make([]int, n)
  size := make([]int, n)
  clean := make([]bool, n)
  for i := 0; i < n; i++ {
    p[i], size[i], clean[i] = i, 1, true
  }
  for _, i := range initial {
    clean[i] = false
  }

  var find func(x int) int
  find = func(x int) int {
    if p[x] != x {
      p[x] = find(p[x])
    }
    return p[x]
  }
  union := func(a, b int) {
    pa, pb := find(a), find(b)
    if pa != pb {
      size[pb] += size[pa]
      p[pa] = pb
    }
  }

  for i := 0; i < n; i++ {
    if !clean[i] {
      continue
    }
    for j := i + 1; j < n; j++ {
      if clean[j] && graph[i][j] == 1 {
        union(i, j)
      }
    }
  }
  cnt := make([]int, n)
  mp := make(map[int]map[int]bool)
  for _, i := range initial {
    s := make(map[int]bool)
    for j := 0; j < n; j++ {
      if clean[j] && graph[i][j] == 1 {
        s[find(j)] = true
      }
    }
    for root, _ := range s {
      cnt[root]++
    }
    mp[i] = s
  }
  mx, ans := -1, 0
  for i, s := range mp {
    t := 0
    for root, _ := range s {
      if cnt[root] == 1 {
        t += size[root]
      }
    }
    if mx < t || (mx == t && i < ans) {
      mx, ans = t, i
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文