- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
Unique Binary Search Trees II
Source
- leetcode: Unique Binary Search Trees II | LeetCode OJ
- lintcode: (164) Unique Binary Search Trees II
Given n, generate all structurally unique BST's
(binary search trees) that store values 1...n.
Example
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
题解
题 Unique Binary Search Trees 的升级版,这道题要求的不是二叉搜索树的数目,而是要构建这样的树。分析方法仍然是可以借鉴的,核心思想为利用『二叉搜索树』的定义,如果以 i 为根节点,那么其左子树由[1, i - 1]构成,右子树由[i + 1, n] 构成。要构建包含 1 到 n 的二叉搜索树,只需遍历 1 到 n 中的数作为根节点,以 i
为界将数列分为左右两部分,小于 i
的数作为左子树,大于 i
的数作为右子树,使用两重循环将左右子树所有可能的组合链接到以 i
为根节点的节点上。
容易看出,以上求解的思路非常适合用递归来处理,接下来便是设计递归的终止步、输入参数和返回结果了。由以上分析可以看出递归严重依赖数的区间和 i
,那要不要将 i
也作为输入参数的一部分呢?首先可以肯定的是必须使用『数的区间』这两个输入参数,又因为 i
是随着『数的区间』这两个参数的,故不应该将其加入到输入参数中。分析方便,不妨设『数的区间』两个输入参数分别为 start
和 end
.
接下来谈谈终止步的确定,由于根据 i
拆分左右子树的过程中,递归调用的方法中入口参数会缩小,且存在 start <= i <= end
, 故终止步为 start > end
. 那要不要对 start == end
返回呢?保险起见可以先写上,后面根据情况再做删改。总结以上思路,简单的伪代码如下:
helper(start, end) {
result;
if (start > end) {
result.push_back(NULL);
return;
} else if (start == end) {
result.push_back(TreeNode(i));
return;
}
// dfs
for (int i = start; i <= end; ++i) {
leftTree = helper(start, i - 1);
rightTree = helper(i + 1, end);
// link left and right sub tree to the root i
for (j in leftTree ){
for (k in rightTree) {
root = TreeNode(i);
root->left = leftTree[j];
root->right = rightTree[k];
result.push_back(root);
}
}
}
return result;
}
大致的框架如上所示,我们来个简单的数据验证下,以[1, 2, 3]为例,调用堆栈图如下所示:
- helper(1,3)
- [leftTree]: helper(1, 0) ==> return NULL
- ---loop i = 2---
- [rightTree]: helper(2, 3)
- [leftTree]: helper(2,1) ==> return NULL
- [rightTree]: helper(3,3) ==> return node(3)
- [for loop]: ==> return (2->3)
- ---loop i = 3---
- [leftTree]: helper(2,2) ==> return node(2)
- [rightTree]: helper(4,3) ==> return NULL
- [for loop]: ==> return (3->2)
- ...
简单验证后可以发现这种方法的 核心为递归地构造左右子树并将其链接到相应的根节点中。 对于 start
和 end
相等的情况的,其实不必单独考虑,因为 start == end
时其左右子树均返回空,故在 for
循环中返回根节点。当然单独考虑可减少递归栈的层数,但实际测下来后发现运行时间反而变长了不少 :(
Python
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
this.val = val
this.left, this.right = None, None
"""
class Solution:
# @paramn n: An integer
# @return: A list of root
def generateTrees(self, n):
return self.helper(1, n)
def helper(self, start, end):
result = []
if start > end:
result.append(None)
return result
for i in xrange(start, end + 1):
# generate left and right sub tree
leftTree = self.helper(start, i - 1)
rightTree = self.helper(i + 1, end)
# link left and right sub tree to root(i)
for j in xrange(len(leftTree)):
for k in xrange(len(rightTree)):
root = TreeNode(i)
root.left = leftTree[j]
root.right = rightTree[k]
result.append(root)
return result
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @paramn n: An integer
* @return: A list of root
*/
vector<TreeNode *> generateTrees(int n) {
return helper(1, n);
}
private:
vector<TreeNode *> helper(int start, int end) {
vector<TreeNode *> result;
if (start > end) {
result.push_back(NULL);
return result;
}
for (int i = start; i <= end; ++i) {
// generate left and right sub tree
vector<TreeNode *> leftTree = helper(start, i - 1);
vector<TreeNode *> rightTree = helper(i + 1, end);
// link left and right sub tree to root(i)
for (int j = 0; j < leftTree.size(); ++j) {
for (int k = 0; k < rightTree.size(); ++k) {
TreeNode *root = new TreeNode(i);
root->left = leftTree[j];
root->right = rightTree[k];
result.push_back(root);
}
}
}
return result;
}
};
Java
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @paramn n: An integer
* @return: A list of root
*/
public List<TreeNode> generateTrees(int n) {
return helper(1, n);
}
private List<TreeNode> helper(int start, int end) {
List<TreeNode> result = new ArrayList<TreeNode>();
if (start > end) {
result.add(null);
return result;
}
for (int i = start; i <= end; i++) {
// generate left and right sub tree
List<TreeNode> leftTree = helper(start, i - 1);
List<TreeNode> rightTree = helper(i + 1, end);
// link left and right sub tree to root(i)
for (TreeNode lnode: leftTree) {
for (TreeNode rnode: rightTree) {
TreeNode root = new TreeNode(i);
root.left = lnode;
root.right = rnode;
result.add(root);
}
}
}
return result;
}
}
源码分析
- 异常处理,返回 None/NULL/null.
- 遍历 start->end, 递归得到左子树和右子树。
- 两重
for
循环将左右子树的所有可能组合添加至最终返回结果。
注意 DFS 辅助方法 helper
中左右子树及返回根节点的顺序。
复杂度分析
递归调用,一个合理的数组区间将生成新的左右子树,时间复杂度为指数级别,使用的临时空间最后都被加入到最终结果,空间复杂度(堆) 近似为 O(1)O(1)O(1), 栈上的空间较大。
Reference
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论