- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Python 2
Interactive widgets
For more examples
%matplotlib inline import matplotlib.pyplot as plt import numpy as np from IPython.html.widgets import interactive from IPython.display import display
:0: FutureWarning: IPython widgets are experimental and may change in the future.
from scipy.stats import beta plt.style.use('ggplot') def dist(a=1, b=1): x = np.linspace(0, 1, 100) pdf = beta.pdf(x, a, b) plt.plot(pdf) return pdf widget = interactive(dist, a=(0.0, 5.0), b=(0.0, 5.0)) widget.background_color = 'lightsalmon' display(widget)
widget.close()
# Currnet settings of variables widget.kwargs
{'a': 0.8, 'b': 0.7}
# Current value of function pdf = widget.result plt.plot(pdf);
Bokeh
More examples
from bokeh.plotting import * from bokeh.models import ColumnDataSource
BokehJS successfully loaded.
output_notebook()
N = 300 x = np.linspace(0, 4*np.pi, N) y1 = np.sin(x) y2 = np.cos(x) source = ColumnDataSource() source.add(data=x, name='x') source.add(data=y1, name='y1') source.add(data=y2, name='y2');
TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select,lasso_select" s1 = figure(tools=TOOLS, plot_width=350, plot_height=350) s1.scatter('x', 'y1', source=source) # Linked brushing in Bokeh is expressed by sharing data sources between # renderers. Note below that s2.scatter is called with the `source` # keyword argument, and supplied with the same data source from s1.scatter s2 = figure(tools=TOOLS, plot_width=350, plot_height=350) s2.scatter('x', 'y2', source=source);
p = gridplot([[s1,s2]]) show(p)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论