返回介绍

solution / 0900-0999 / 0999.Available Captures for Rook / README_EN

发布于 2024-06-17 01:03:32 字数 8987 浏览 0 评论 0 收藏 0

999. Available Captures for Rook

中文文档

Description

On an 8 x 8 chessboard, there is exactly one white rook 'R' and some number of white bishops 'B', black pawns 'p', and empty squares '.'.

When the rook moves, it chooses one of four cardinal directions (north, east, south, or west), then moves in that direction until it chooses to stop, reaches the edge of the board, captures a black pawn, or is blocked by a white bishop. A rook is considered attacking a pawn if the rook can capture the pawn on the rook's turn. The number of available captures for the white rook is the number of pawns that the rook is attacking.

Return _the number of available captures for the white rook_.

 

Example 1:

Input: board = [[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","R",".",".",".","p"],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
Output: 3
Explanation: In this example, the rook is attacking all the pawns.

Example 2:

Input: board = [[".",".",".",".",".",".",".","."],[".","p","p","p","p","p",".","."],[".","p","p","B","p","p",".","."],[".","p","B","R","B","p",".","."],[".","p","p","B","p","p",".","."],[".","p","p","p","p","p",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
Output: 0
Explanation: The bishops are blocking the rook from attacking any of the pawns.

Example 3:

Input: board = [[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","p",".",".",".","."],["p","p",".","R",".","p","B","."],[".",".",".",".",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."]]
Output: 3
Explanation: The rook is attacking the pawns at positions b5, d6, and f5.

 

Constraints:

  • board.length == 8
  • board[i].length == 8
  • board[i][j] is either 'R', '.', 'B', or 'p'
  • There is exactly one cell with board[i][j] == 'R'

Solutions

Solution 1: Simulation

First, we traverse the chessboard to find the position of the rook $(x, y)$. Then, starting from $(x, y)$, we traverse in four directions: up, down, left, and right:

  • If we encounter a bishop or a boundary, we stop traversing in that direction.
  • If we encounter a pawn, we increment the answer by one, and then stop traversing in that direction.
  • Otherwise, we continue traversing.

After traversing in all four directions, we can get the answer.

The time complexity is $O(m \times n)$, where $m$ and $n$ are the number of rows and columns of the chessboard, respectively. In this problem, $m = n = 8$. The space complexity is $O(1)$.

class Solution:
  def numRookCaptures(self, board: List[List[str]]) -> int:
    ans = 0
    dirs = (-1, 0, 1, 0, -1)
    for i in range(8):
      for j in range(8):
        if board[i][j] == "R":
          for a, b in pairwise(dirs):
            x, y = i, j
            while 0 <= x + a < 8 and 0 <= y + b < 8:
              x, y = x + a, y + b
              if board[x][y] == "p":
                ans += 1
                break
              if board[x][y] == "B":
                break
    return ans
class Solution {
  public int numRookCaptures(char[][] board) {
    int ans = 0;
    int[] dirs = {-1, 0, 1, 0, -1};
    for (int i = 0; i < 8; ++i) {
      for (int j = 0; j < 8; ++j) {
        if (board[i][j] == 'R') {
          for (int k = 0; k < 4; ++k) {
            int x = i, y = j;
            int a = dirs[k], b = dirs[k + 1];
            while (x + a >= 0 && x + a < 8 && y + b >= 0 && y + b < 8
              && board[x + a][y + b] != 'B') {
              x += a;
              y += b;
              if (board[x][y] == 'p') {
                ++ans;
                break;
              }
            }
          }
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  int numRookCaptures(vector<vector<char>>& board) {
    int ans = 0;
    int dirs[5] = {-1, 0, 1, 0, -1};
    for (int i = 0; i < 8; ++i) {
      for (int j = 0; j < 8; ++j) {
        if (board[i][j] == 'R') {
          for (int k = 0; k < 4; ++k) {
            int x = i, y = j;
            int a = dirs[k], b = dirs[k + 1];
            while (x + a >= 0 && x + a < 8 && y + b >= 0 && y + b < 8 && board[x + a][y + b] != 'B') {
              x += a;
              y += b;
              if (board[x][y] == 'p') {
                ++ans;
                break;
              }
            }
          }
        }
      }
    }
    return ans;
  }
};
func numRookCaptures(board [][]byte) (ans int) {
  dirs := [5]int{-1, 0, 1, 0, -1}
  for i := 0; i < 8; i++ {
    for j := 0; j < 8; j++ {
      if board[i][j] == 'R' {
        for k := 0; k < 4; k++ {
          x, y := i, j
          a, b := dirs[k], dirs[k+1]
          for x+a >= 0 && x+a < 8 && y+b >= 0 && y+b < 8 && board[x+a][y+b] != 'B' {
            x, y = x+a, y+b
            if board[x][y] == 'p' {
              ans++
              break
            }
          }
        }
      }
    }
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文