返回介绍

solution / 1500-1599 / 1502.Can Make Arithmetic Progression From Sequence / README

发布于 2024-06-17 01:03:19 字数 7260 浏览 0 评论 0 收藏 0

1502. 判断能否形成等差数列

English Version

题目描述

给你一个数字数组 arr

如果一个数列中,任意相邻两项的差总等于同一个常数,那么这个数列就称为 等差数列

如果可以重新排列数组形成等差数列,请返回 true ;否则,返回 false

 

示例 1:

输入:arr = [3,5,1]
输出:true
解释:对数组重新排序得到 [1,3,5] 或者 [5,3,1] ,任意相邻两项的差分别为 2 或 -2 ,可以形成等差数列。

示例 2:

输入:arr = [1,2,4]
输出:false
解释:无法通过重新排序得到等差数列。

 

提示:

  • 2 <= arr.length <= 1000
  • -10^6 <= arr[i] <= 10^6

解法

方法一:排序 + 遍历

我们可以先将数组 arr 排序,然后遍历数组,判断相邻两项的差是否相等即可。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 arr 的长度。

class Solution:
  def canMakeArithmeticProgression(self, arr: List[int]) -> bool:
    arr.sort()
    d = arr[1] - arr[0]
    return all(b - a == d for a, b in pairwise(arr))
class Solution {
  public boolean canMakeArithmeticProgression(int[] arr) {
    Arrays.sort(arr);
    int d = arr[1] - arr[0];
    for (int i = 2; i < arr.length; ++i) {
      if (arr[i] - arr[i - 1] != d) {
        return false;
      }
    }
    return true;
  }
}
class Solution {
public:
  bool canMakeArithmeticProgression(vector<int>& arr) {
    sort(arr.begin(), arr.end());
    int d = arr[1] - arr[0];
    for (int i = 2; i < arr.size(); i++) {
      if (arr[i] - arr[i - 1] != d) {
        return false;
      }
    }
    return true;
  }
};
func canMakeArithmeticProgression(arr []int) bool {
  sort.Ints(arr)
  d := arr[1] - arr[0]
  for i := 2; i < len(arr); i++ {
    if arr[i]-arr[i-1] != d {
      return false
    }
  }
  return true
}
function canMakeArithmeticProgression(arr: number[]): boolean {
  arr.sort((a, b) => a - b);
  const n = arr.length;
  for (let i = 2; i < n; i++) {
    if (arr[i - 2] - arr[i - 1] !== arr[i - 1] - arr[i]) {
      return false;
    }
  }
  return true;
}
impl Solution {
  pub fn can_make_arithmetic_progression(mut arr: Vec<i32>) -> bool {
    arr.sort();
    let n = arr.len();
    for i in 2..n {
      if arr[i - 2] - arr[i - 1] != arr[i - 1] - arr[i] {
        return false;
      }
    }
    true
  }
}
/**
 * @param {number[]} arr
 * @return {boolean}
 */
var canMakeArithmeticProgression = function (arr) {
  arr.sort((a, b) => a - b);
  for (let i = 1; i < arr.length - 1; i++) {
    if (arr[i] << 1 != arr[i - 1] + arr[i + 1]) {
      return false;
    }
  }
  return true;
};
int cmp(const void* a, const void* b) {
  return *(int*) a - *(int*) b;
}

bool canMakeArithmeticProgression(int* arr, int arrSize) {
  qsort(arr, arrSize, sizeof(int), cmp);
  for (int i = 2; i < arrSize; i++) {
    if (arr[i - 2] - arr[i - 1] != arr[i - 1] - arr[i]) {
      return 0;
    }
  }
  return 1;
}

方法二:哈希表 + 数学

我们先找出数组 $arr$ 中的最小值 $a$ 和最大值 $b$,如果数组 $arr$ 可以重排成等差数列,那么公差 $d = \frac{b - a}{n - 1}$ 必须为整数。

我们可以用哈希表来记录数组 $arr$ 中的所有元素,然后遍历 $i \in [0, n)$,判断 $a + d \times i$ 是否在哈希表中,如果不在,说明数组 $arr$ 不能重排成等差数列,返回 false。否则遍历完数组后,返回 true

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 arr 的长度。

class Solution:
  def canMakeArithmeticProgression(self, arr: List[int]) -> bool:
    a = min(arr)
    b = max(arr)
    n = len(arr)
    if (b - a) % (n - 1):
      return False
    d = (b - a) // (n - 1)
    s = set(arr)
    return all(a + d * i in s for i in range(n))
class Solution {
  public boolean canMakeArithmeticProgression(int[] arr) {
    int n = arr.length;
    int a = arr[0], b = arr[0];
    Set<Integer> s = new HashSet<>();
    for (int x : arr) {
      a = Math.min(a, x);
      b = Math.max(b, x);
      s.add(x);
    }
    if ((b - a) % (n - 1) != 0) {
      return false;
    }
    int d = (b - a) / (n - 1);
    for (int i = 0; i < n; ++i) {
      if (!s.contains(a + d * i)) {
        return false;
      }
    }
    return true;
  }
}
class Solution {
public:
  bool canMakeArithmeticProgression(vector<int>& arr) {
    auto [a, b] = minmax_element(arr.begin(), arr.end());
    int n = arr.size();
    if ((*b - *a) % (n - 1) != 0) {
      return false;
    }
    int d = (*b - *a) / (n - 1);
    unordered_set<int> s(arr.begin(), arr.end());
    for (int i = 0; i < n; ++i) {
      if (!s.count(*a + d * i)) {
        return false;
      }
    }
    return true;
  }
};
func canMakeArithmeticProgression(arr []int) bool {
  a, b := slices.Min(arr), slices.Max(arr)
  n := len(arr)
  if (b-a)%(n-1) != 0 {
    return false
  }
  d := (b - a) / (n - 1)
  s := map[int]bool{}
  for _, x := range arr {
    s[x] = true
  }
  for i := 0; i < n; i++ {
    if !s[a+i*d] {
      return false
    }
  }
  return true
}
function canMakeArithmeticProgression(arr: number[]): boolean {
  const n = arr.length;
  const map = new Map<number, number>();
  let min = Infinity;
  let max = -Infinity;
  for (const num of arr) {
    map.set(num, (map.get(num) ?? 0) + 1);
    min = Math.min(min, num);
    max = Math.max(max, num);
  }
  if (max === min) {
    return true;
  }
  if ((max - min) % (arr.length - 1)) {
    return false;
  }
  const diff = (max - min) / (arr.length - 1);
  for (let i = min; i <= max; i += diff) {
    if (map.get(i) !== 1) {
      return false;
    }
  }
  return true;
}
use std::collections::HashMap;
impl Solution {
  pub fn can_make_arithmetic_progression(arr: Vec<i32>) -> bool {
    let n = arr.len() as i32;
    let mut min = i32::MAX;
    let mut max = i32::MIN;
    let mut map = HashMap::new();
    for &num in arr.iter() {
      *map.entry(num).or_insert(0) += 1;
      min = min.min(num);
      max = max.max(num);
    }
    if min == max {
      return true;
    }
    if (max - min) % (n - 1) != 0 {
      return false;
    }
    let diff = (max - min) / (n - 1);
    let mut k = min;
    while k <= max {
      if *map.get(&k).unwrap_or(&0) != 1 {
        return false;
      }
      k += diff;
    }
    true
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文