返回介绍

solution / 1700-1799 / 1738.Find Kth Largest XOR Coordinate Value / README

发布于 2024-06-17 01:03:15 字数 4966 浏览 0 评论 0 收藏 0

1738. 找出第 K 大的异或坐标值

English Version

题目描述

给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。

矩阵中坐标 (a, b) 可由对所有满足 0 <= i <= a < m0 <= j <= b < n 的元素 matrix[i][j]下标从 0 开始计数)执行异或运算得到。

请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。

 

示例 1:

输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。

示例 2:

输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。

示例 3:

输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。

示例 4:

输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 1000
  • 0 <= matrix[i][j] <= 106
  • 1 <= k <= m * n

解法

方法一:二维前缀异或 + 排序或快速选择

我们定义一个二维前缀异或数组 $s$,其中 $s[i][j]$ 表示矩阵前 $i$ 行和前 $j$ 列的元素异或运算的结果,即:

$$ s[i][j] = \bigoplus_{0 \leq x \leq i, 0 \leq y \leq j} matrix[x][y] $$

而 $s[i][j]$ 可以由 $s[i - 1][j]$, $s[i][j - 1]$ 和 $s[i - 1][j - 1]$ 三个元素计算得到,即:

$$ s[i][j] = s[i - 1][j] \oplus s[i][j - 1] \oplus s[i - 1][j - 1] \oplus matrix[i - 1][j - 1] $$

我们遍历矩阵,计算出所有的 $s[i][j]$,然后将其排序,最后返回第 $k$ 大的元素即可。如果不想使用排序,也可以使用快速选择算法,这样可以优化时间复杂度。

时间复杂度 $O(m \times n \times \log (m \times n))$ 或 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。

class Solution:
  def kthLargestValue(self, matrix: List[List[int]], k: int) -> int:
    m, n = len(matrix), len(matrix[0])
    s = [[0] * (n + 1) for _ in range(m + 1)]
    ans = []
    for i in range(m):
      for j in range(n):
        s[i + 1][j + 1] = s[i + 1][j] ^ s[i][j + 1] ^ s[i][j] ^ matrix[i][j]
        ans.append(s[i + 1][j + 1])
    return nlargest(k, ans)[-1]
class Solution {
  public int kthLargestValue(int[][] matrix, int k) {
    int m = matrix.length, n = matrix[0].length;
    int[][] s = new int[m + 1][n + 1];
    List<Integer> ans = new ArrayList<>();
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        s[i + 1][j + 1] = s[i + 1][j] ^ s[i][j + 1] ^ s[i][j] ^ matrix[i][j];
        ans.add(s[i + 1][j + 1]);
      }
    }
    Collections.sort(ans);
    return ans.get(ans.size() - k);
  }
}
class Solution {
public:
  int kthLargestValue(vector<vector<int>>& matrix, int k) {
    int m = matrix.size(), n = matrix[0].size();
    vector<vector<int>> s(m + 1, vector<int>(n + 1));
    vector<int> ans;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        s[i + 1][j + 1] = s[i + 1][j] ^ s[i][j + 1] ^ s[i][j] ^ matrix[i][j];
        ans.push_back(s[i + 1][j + 1]);
      }
    }
    sort(ans.begin(), ans.end());
    return ans[ans.size() - k];
  }
};
func kthLargestValue(matrix [][]int, k int) int {
  m, n := len(matrix), len(matrix[0])
  s := make([][]int, m+1)
  for i := range s {
    s[i] = make([]int, n+1)
  }
  var ans []int
  for i := 0; i < m; i++ {
    for j := 0; j < n; j++ {
      s[i+1][j+1] = s[i+1][j] ^ s[i][j+1] ^ s[i][j] ^ matrix[i][j]
      ans = append(ans, s[i+1][j+1])
    }
  }
  sort.Ints(ans)
  return ans[len(ans)-k]
}
function kthLargestValue(matrix: number[][], k: number): number {
  const m: number = matrix.length;
  const n: number = matrix[0].length;
  const s = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => 0));
  const ans: number[] = [];
  for (let i = 0; i < m; ++i) {
    for (let j = 0; j < n; ++j) {
      s[i + 1][j + 1] = s[i + 1][j] ^ s[i][j + 1] ^ s[i][j] ^ matrix[i][j];
      ans.push(s[i + 1][j + 1]);
    }
  }
  ans.sort((a, b) => b - a);
  return ans[k - 1];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文