- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
2 Sum
Source
- leetcode: Two Sum | LeetCode OJ
- lintcode: (56) 2 Sum
Problem
Given an array of integers, find two numbers such that they add up to a specific target number.
The function twoSum
should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are NOT zero-based.
Example
numbers= [2, 7, 11, 15]
, target= 9
return [1, 2]
Note
You may assume that each input would have exactly one solution
Challenge
Either of the following solutions are acceptable:
- O(n) Space, O(nlogn) Time
- O(n) Space, O(n) Time
题解 1 - 哈希表
找两数之和是否为 target
, 如果是找数组中一个值为 target
该多好啊!遍历一次就知道了,我只想说,too naive... 难道要将数组中所有元素的两两组合都求出来与 target
比较吗?时间复杂度显然为 O(n2)O(n^2)O(n2), 显然不符题目要求。找一个数时直接遍历即可,那么可不可以将两个数之和转换为找一个数呢?我们先来看看两数之和为 target
所对应的判断条件—— xi+xj=targetx_i + x_j = targetxi+xj=target, 可进一步转化为 xi=target−xjx_i = target - x_jxi=target−xj, 其中 iii 和 jjj 为数组中的下标。一段神奇的数学推理就将找两数之和转化为了找一个数是否在数组中了!可见数学是多么的重要...
基本思路有了,现在就来看看怎么实现,显然我们需要额外的空间(也就是哈希表) 来保存已经处理过的 xjx_jxj( 注意这里并不能先初始化哈希表,否则无法排除两个相同的元素相加为 target 的情况 ), 如果不满足等式条件,那么我们就往后遍历,并把之前的元素加入到哈希表中,如果 target
减去当前索引后的值在哈希表中找到了,那么就将哈希表中相应的索引返回,大功告成!
Python
class Solution:
"""
@param numbers : An array of Integer
@param target : target = numbers[index1] + numbers[index2]
@return : [index1 + 1, index2 + 1] (index1 < index2)
"""
def twoSum(self, numbers, target):
hashdict = {}
for i, item in enumerate(numbers):
if (target - item) in hashdict:
return (hashdict[target - item] + 1, i + 1)
hashdict[item] = i
return (-1, -1)
C++
class Solution {
public:
/*
* @param numbers : An array of Integer
* @param target : target = numbers[index1] + numbers[index2]
* @return : [index1+1, index2+1] (index1 < index2)
*/
vector<int> twoSum(vector<int> &nums, int target) {
vector<int> result;
const int length = nums.size();
if (0 == length) {
return result;
}
// first value, second index
unordered_map<int, int> hash(length);
for (int i = 0; i != length; ++i) {
if (hash.find(target - nums[i]) != hash.end()) {
result.push_back(hash[target - nums[i]]);
result.push_back(i + 1);
return result;
} else {
hash[nums[i]] = i + 1;
}
}
return result;
}
};
Java
public class Solution {
/*
* @param numbers : An array of Integer
* @param target : target = numbers[index1] + numbers[index2]
* @return : [index1 + 1, index2 + 1] (index1 < index2)
*/
public int[] twoSum(int[] numbers, int target) {
if (numbers == null || numbers.length == 0) return new int[]{0, 0};
Map<Integer, Integer> hashmap = new HashMap<Integer, Integer>();
int index1 = 0, index2 = 0;
for (int i = 0; i < numbers.length; i++) {
if (hashmap.containsKey(target - numbers[i])) {
index1 = hashmap.get(target - numbers[i]);
index2 = i;
return new int[]{1 + index1, 1 + index2};
} else {
hashmap.put(numbers[i], i);
}
}
return new int[]{0, 0};
}
}
源码分析
- 异常处理。
- 使用 C++ 11 中的哈希表实现
unordered_map
映射值和索引。Python 中的dict
就是天然的哈希表。 - 找到满足条件的解就返回,找不到就加入哈希表中。注意题中要求返回索引值的含义。
复杂度分析
哈希表用了和数组等长的空间,空间复杂度为 O(n)O(n)O(n), 遍历一次数组,时间复杂度为 O(n)O(n)O(n).
题解 2 - 排序后使用两根指针
但凡可以用空间换时间的做法,往往也可以使用时间换空间。另外一个容易想到的思路就是先对数组排序,然后使用两根指针分别指向首尾元素,逐步向中间靠拢,直至找到满足条件的索引为止。
C++
class Solution {
public:
/*
* @param numbers : An array of Integer
* @param target : target = numbers[index1] + numbers[index2]
* @return : [index1+1, index2+1] (index1 < index2)
*/
vector<int> twoSum(vector<int> &nums, int target) {
vector<int> result;
const int length = nums.size();
if (0 == length) {
return result;
}
// first num, second is index
vector<pair<int, int> > num_index(length);
// map num value and index
for (int i = 0; i != length; ++i) {
num_index[i].first = nums[i];
num_index[i].second = i + 1;
}
sort(num_index.begin(), num_index.end());
int start = 0, end = length - 1;
while (start < end) {
if (num_index[start].first + num_index[end].first > target) {
--end;
} else if(num_index[start].first + num_index[end].first == target) {
int min_index = min(num_index[start].second, num_index[end].second);
int max_index = max(num_index[start].second, num_index[end].second);
result.push_back(min_index);
result.push_back(max_index);
return result;
} else {
++start;
}
}
return result;
}
};
源码分析
- 异常处理。
- 使用
length
保存数组的长度,避免反复调用nums.size()
造成性能损失。 - 使用
pair
组合排序前的值和索引,避免排序后找不到原有索引信息。 - 使用标准库函数排序。
- 两根指针指头尾,逐步靠拢。
复杂度分析
遍历一次原数组得到 pair
类型的新数组,时间复杂度为 O(n)O(n)O(n), 空间复杂度也为 O(n)O(n)O(n). 标准库中的排序方法时间复杂度近似为 O(nlogn)O(n \log n)O(nlogn), 两根指针遍历数组时间复杂度为 O(n)O(n)O(n).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论