返回介绍

solution / 0100-0199 / 0117.Populating Next Right Pointers in Each Node II / README

发布于 2024-06-17 01:04:04 字数 12004 浏览 0 评论 0 收藏 0

117. 填充每个节点的下一个右侧节点指针 II

English Version

题目描述

给定一个二叉树:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

 

示例 1:

输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。

示例 2:

输入:root = []
输出:[]

 

提示:

  • 树中的节点数在范围 [0, 6000]
  • -100 <= Node.val <= 100

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序的隐式栈空间不计入额外空间复杂度。

    解法

    方法一:BFS

    我们使用队列 $q$ 进行层序遍历,每次遍历一层时,将当前层的节点按顺序连接起来。

    时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

    """
    # Definition for a Node.
    class Node:
      def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
    """
    
    
    class Solution:
      def connect(self, root: "Node") -> "Node":
        if root is None:
          return root
        q = deque([root])
        while q:
          p = None
          for _ in range(len(q)):
            node = q.popleft()
            if p:
              p.next = node
            p = node
            if node.left:
              q.append(node.left)
            if node.right:
              q.append(node.right)
        return root
    
    /*
    // Definition for a Node.
    class Node {
      public int val;
      public Node left;
      public Node right;
      public Node next;
    
      public Node() {}
    
      public Node(int _val) {
        val = _val;
      }
    
      public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
      }
    };
    */
    
    class Solution {
      public Node connect(Node root) {
        if (root == null) {
          return root;
        }
        Deque<Node> q = new ArrayDeque<>();
        q.offer(root);
        while (!q.isEmpty()) {
          Node p = null;
          for (int n = q.size(); n > 0; --n) {
            Node node = q.poll();
            if (p != null) {
              p.next = node;
            }
            p = node;
            if (node.left != null) {
              q.offer(node.left);
            }
            if (node.right != null) {
              q.offer(node.right);
            }
          }
        }
        return root;
      }
    }
    
    /*
    // Definition for a Node.
    class Node {
    public:
      int val;
      Node* left;
      Node* right;
      Node* next;
    
      Node() : val(0), left(NULL), right(NULL), next(NULL) {}
    
      Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
    
      Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
    };
    */
    
    class Solution {
    public:
      Node* connect(Node* root) {
        if (!root) {
          return root;
        }
        queue<Node*> q{{root}};
        while (!q.empty()) {
          Node* p = nullptr;
          for (int n = q.size(); n; --n) {
            Node* node = q.front();
            q.pop();
            if (p) {
              p->next = node;
            }
            p = node;
            if (node->left) {
              q.push(node->left);
            }
            if (node->right) {
              q.push(node->right);
            }
          }
        }
        return root;
      }
    };
    
    /**
     * Definition for a Node.
     * type Node struct {
     *   Val int
     *   Left *Node
     *   Right *Node
     *   Next *Node
     * }
     */
    
    func connect(root *Node) *Node {
      if root == nil {
        return root
      }
      q := []*Node{root}
      for len(q) > 0 {
        var p *Node
        for n := len(q); n > 0; n-- {
          node := q[0]
          q = q[1:]
          if p != nil {
            p.Next = node
          }
          p = node
          if node.Left != nil {
            q = append(q, node.Left)
          }
          if node.Right != nil {
            q = append(q, node.Right)
          }
        }
      }
      return root
    }
    
    /**
     * Definition for Node.
     * class Node {
     *   val: number
     *   left: Node | null
     *   right: Node | null
     *   next: Node | null
     *   constructor(val?: number, left?: Node, right?: Node, next?: Node) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     *     this.next = (next===undefined ? null : next)
     *   }
     * }
     */
    
    function connect(root: Node | null): Node | null {
      if (!root) {
        return null;
      }
      const q: Node[] = [root];
      while (q.length) {
        const nq: Node[] = [];
        let p: Node | null = null;
        for (const node of q) {
          if (p) {
            p.next = node;
          }
          p = node;
          const { left, right } = node;
          left && nq.push(left);
          right && nq.push(right);
        }
        q.splice(0, q.length, ...nq);
      }
      return root;
    }
    
    /*
    // Definition for a Node.
    public class Node {
      public int val;
      public Node left;
      public Node right;
      public Node next;
    
      public Node() {}
    
      public Node(int _val) {
        val = _val;
      }
    
      public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
      }
    }
    */
    
    public class Solution {
      public Node Connect(Node root) {
        if (root == null) {
          return null;
        }
        var q = new Queue<Node>();
        q.Enqueue(root);
        while (q.Count > 0) {
          Node p = null;
          for (int i = q.Count; i > 0; --i) {
            var node = q.Dequeue();
            if (p != null) {
              p.next = node;
            }
            p = node;
            if (node.left != null) {
              q.Enqueue(node.left);
            }
            if (node.right != null) {
              q.Enqueue(node.right);
            }
          }
        }
        return root;
      }
    }
    

    方法二:空间优化

    方法一的空间复杂度较高,因为需要使用队列存储每一层的节点。我们可以使用常数空间来实现。

    定义两个指针 $prev$ 和 $next$,分别指向下一层的前一个节点和第一个节点。遍历当前层的节点时,把下一层的节点串起来,同时找到下一层的第一个节点。当前层遍历完后,把下一层的第一个节点 $next$ 赋值给 $node$,继续遍历。

    时间复杂度 $O(n)$,其中 $n$ 为二叉树的节点个数。空间复杂度 $O(1)$。

    """
    # Definition for a Node.
    class Node:
      def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
    """
    
    
    class Solution:
      def connect(self, root: 'Node') -> 'Node':
        def modify(curr):
          nonlocal prev, next
          if curr is None:
            return
          next = next or curr
          if prev:
            prev.next = curr
          prev = curr
    
        node = root
        while node:
          prev = next = None
          while node:
            modify(node.left)
            modify(node.right)
            node = node.next
          node = next
        return root
    
    /*
    // Definition for a Node.
    class Node {
      public int val;
      public Node left;
      public Node right;
      public Node next;
    
      public Node() {}
    
      public Node(int _val) {
        val = _val;
      }
    
      public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
      }
    };
    */
    
    class Solution {
      private Node prev, next;
    
      public Node connect(Node root) {
        Node node = root;
        while (node != null) {
          prev = null;
          next = null;
          while (node != null) {
            modify(node.left);
            modify(node.right);
            node = node.next;
          }
          node = next;
        }
        return root;
      }
    
      private void modify(Node curr) {
        if (curr == null) {
          return;
        }
        if (next == null) {
          next = curr;
        }
        if (prev != null) {
          prev.next = curr;
        }
        prev = curr;
      }
    }
    
    /*
    // Definition for a Node.
    class Node {
    public:
      int val;
      Node* left;
      Node* right;
      Node* next;
    
      Node() : val(0), left(NULL), right(NULL), next(NULL) {}
    
      Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
    
      Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
    };
    */
    
    class Solution {
    public:
      Node* connect(Node* root) {
        Node* node = root;
        Node* prev = nullptr;
        Node* next = nullptr;
        auto modify = [&](Node* curr) {
          if (!curr) {
            return;
          }
          if (!next) {
            next = curr;
          }
          if (prev) {
            prev->next = curr;
          }
          prev = curr;
        };
        while (node) {
          prev = next = nullptr;
          while (node) {
            modify(node->left);
            modify(node->right);
            node = node->next;
          }
          node = next;
        }
        return root;
      }
    };
    
    /**
     * Definition for a Node.
     * type Node struct {
     *   Val int
     *   Left *Node
     *   Right *Node
     *   Next *Node
     * }
     */
    
    func connect(root *Node) *Node {
      node := root
      var prev, next *Node
      modify := func(curr *Node) {
        if curr == nil {
          return
        }
        if next == nil {
          next = curr
        }
        if prev != nil {
          prev.Next = curr
        }
        prev = curr
      }
      for node != nil {
        prev, next = nil, nil
        for node != nil {
          modify(node.Left)
          modify(node.Right)
          node = node.Next
        }
        node = next
      }
      return root
    }
    
    /**
     * Definition for Node.
     * class Node {
     *   val: number
     *   left: Node | null
     *   right: Node | null
     *   next: Node | null
     *   constructor(val?: number, left?: Node, right?: Node, next?: Node) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     *     this.next = (next===undefined ? null : next)
     *   }
     * }
     */
    
    function connect(root: Node | null): Node | null {
      const modify = (curr: Node | null): void => {
        if (!curr) {
          return;
        }
        next = next || curr;
        if (prev) {
          prev.next = curr;
        }
        prev = curr;
      };
      let node = root;
      let [prev, next] = [null, null];
      while (node) {
        while (node) {
          modify(node.left);
          modify(node.right);
          node = node.next;
        }
        node = next;
        [prev, next] = [null, null];
      }
      return root;
    }
    
    /*
    // Definition for a Node.
    public class Node {
      public int val;
      public Node left;
      public Node right;
      public Node next;
    
      public Node() {}
    
      public Node(int _val) {
        val = _val;
      }
    
      public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
      }
    }
    */
    
    public class Solution {
      private Node prev, next;
    
      public Node Connect(Node root) {
        Node node = root;
        while (node != null) {
          prev = null;
          next = null;
          while (node != null) {
            modify(node.left);
            modify(node.right);
            node = node.next;
          }
          node = next;
        }
        return root;
      }
    
      private void modify(Node curr) {
        if (curr == null) {
          return;
        }
        if (next == null) {
          next = curr;
        }
        if (prev != null) {
          prev.next = curr;
        }
        prev = curr;
      }
    }
    

    如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

    扫码二维码加入Web技术交流群

    发布评论

    需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
    列表为空,暂无数据
      我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
      原文