- 一个 Python 的数据分析库
- 关于 Pandas
- 获取 Pandas
- v0.25.0 版本特性(2019年7月18日)
- 安装
- 快速入门
- Pandas 用户指南目录
- IO工具(文本,CSV,HDF5,…)
- 索引和数据选择器
- 多层级索引和高级索引
- Merge, join, and concatenate
- Reshaping and pivot tables
- Pandas 处理文本字符串
- Working with missing data
- Categorical data
- Nullable 整型数据类型
- Visualization
- Computational tools
- Group By: split-apply-combine
- 时间序列与日期用法
- 时间差
- Styling
- Options and settings
- Enhancing performance
- Sparse data structures
- Frequently Asked Questions (FAQ)
- 烹饪指南
- Pandas 生态圈
- API 参考手册
- 开发者文档
- 发布日志
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
API 参考手册
本页面概述了所有公共的Pandas对象、功能和。 方法。pandas.*
命名空间中公开的所有类和函数都是公共的。
有些子模块是公开的,其中包括pandas.error
、pandas.plotting
和pandas.testing
。pandas.io
和pandas.tseries
系列子模块中的公共函数在文档中有所提及。pandas.api.types
子模块含一些与pandas中的数据类型相关的公共函数。
警告
pandas.core
、pandas.compat
和pandas.util
顶级模块是PRIVATE(私有的)。此类模块的功能稳定性无法保证。
- Input/outputopen in new window
- Picklingopen in new window
- Flat fileopen in new window
- Clipboardopen in new window
- Excelopen in new window
- JSONopen in new window
- HTMLopen in new window
- HDFStore: PyTables (HDF5)open in new window
- Featheropen in new window
- Parquetopen in new window
- SASopen in new window
- SQLopen in new window
- Google BigQueryopen in new window
- STATAopen in new window
- General functionsopen in new window
- Data manipulationsopen in new window
- Top-level missing dataopen in new window
- Top-level conversionsopen in new window
- Top-level dealing with datetimelikeopen in new window
- Top-level dealing with intervalsopen in new window
- Top-level evaluationopen in new window
- Hashingopen in new window
- Testingopen in new window
- Seriesopen in new window
- Constructoropen in new window
- Attributesopen in new window
- Conversionopen in new window
- Indexing, iterationopen in new window
- Binary operator functionsopen in new window
- Function application, groupby & windowopen in new window
- Computations / descriptive statsopen in new window
- Reindexing / selection / label manipulationopen in new window
- Missing data handlingopen in new window
- Reshaping, sortingopen in new window
- Combining / joining / mergingopen in new window
- Time series-relatedopen in new window
- Accessorsopen in new window
- Plottingopen in new window
- Serialization / IO / conversionopen in new window
- Sparseopen in new window
- DataFrameopen in new window
- Constructoropen in new window
- Attributes and underlying dataopen in new window
- Conversionopen in new window
- Indexing, iterationopen in new window
- Binary operator functionsopen in new window
- Function application, GroupBy & windowopen in new window
- Computations / descriptive statsopen in new window
- Reindexing / selection / label manipulationopen in new window
- Missing data handlingopen in new window
- Reshaping, sorting, transposingopen in new window
- Combining / joining / mergingopen in new window
- Time series-relatedopen in new window
- Plottingopen in new window
- Sparse accessoropen in new window
- Serialization / IO / conversionopen in new window
- Sparseopen in new window
- Pandas arraysopen in new window
- Panelopen in new window
- Index objectsopen in new window
- Date offsetsopen in new window
- DateOffsetopen in new window
- BusinessDayopen in new window
- BusinessHouropen in new window
- CustomBusinessDayopen in new window
- CustomBusinessHouropen in new window
- MonthOffsetopen in new window
- MonthEndopen in new window
- MonthBeginopen in new window
- BusinessMonthEndopen in new window
- BusinessMonthBeginopen in new window
- CustomBusinessMonthEndopen in new window
- CustomBusinessMonthBeginopen in new window
- SemiMonthOffsetopen in new window
- SemiMonthEndopen in new window
- SemiMonthBeginopen in new window
- Weekopen in new window
- WeekOfMonthopen in new window
- LastWeekOfMonthopen in new window
- QuarterOffsetopen in new window
- BQuarterEndopen in new window
- BQuarterBeginopen in new window
- QuarterEndopen in new window
- QuarterBeginopen in new window
- YearOffsetopen in new window
- BYearEndopen in new window
- BYearBeginopen in new window
- YearEndopen in new window
- YearBeginopen in new window
- FY5253open in new window
- FY5253Quarteropen in new window
- Easteropen in new window
- Tickopen in new window
- Dayopen in new window
- Houropen in new window
- Minuteopen in new window
- Secondopen in new window
- Milliopen in new window
- Microopen in new window
- Nanoopen in new window
- BDayopen in new window
- BMonthEndopen in new window
- BMonthBeginopen in new window
- CBMonthEndopen in new window
- CBMonthBeginopen in new window
- CDayopen in new window
- Frequenciesopen in new window
- Windowopen in new window
- GroupByopen in new window
- Resamplingopen in new window
- Styleopen in new window
- Plottingopen in new window
- pandas.plotting.andrews_curvesopen in new window
- pandas.plotting.bootstrap_plotopen in new window
- pandas.plotting.deregister_matplotlib_convertersopen in new window
- pandas.plotting.lag_plotopen in new window
- pandas.plotting.parallel_coordinatesopen in new window
- pandas.plotting.radvizopen in new window
- pandas.plotting.register_matplotlib_convertersopen in new window
- pandas.plotting.scatter_matrixopen in new window
- General utility functionsopen in new window
- Extensionsopen in new window
- pandas.api.extensions.register_extension_dtypeopen in new window
- pandas.api.extensions.register_dataframe_accessoropen in new window
- pandas.api.extensions.register_series_accessoropen in new window
- pandas.api.extensions.register_index_accessoropen in new window
- pandas.api.extensions.ExtensionDtypeopen in new window
- pandas.api.extensions.ExtensionArrayopen in new window
- pandas.arrays.PandasArrayopen in new window
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论