- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Comparison of EM routines
np.random.seed(123) # create data set n = 1000 _mus = np.array([[0,4], [-2,0]]) _sigmas = np.array([[[3, 0], [0, 0.5]], [[1,0],[0,2]]]) _pis = np.array([0.6, 0.4]) xs = np.concatenate([np.random.multivariate_normal(mu, sigma, int(pi*n)) for pi, mu, sigma in zip(_pis, _mus, _sigmas)]) # initial guesses for parameters pis = np.random.random(2) pis /= pis.sum() mus = np.random.random((2,2)) sigmas = np.array([np.eye(2)] * 2)
%%time ll1, pis1, mus1, sigmas1 = em_gmm_orig(xs, pis, mus, sigmas)
intervals = 101 ys = np.linspace(-8,8,intervals) X, Y = np.meshgrid(ys, ys) _ys = np.vstack([X.ravel(), Y.ravel()]).T z = np.zeros(len(_ys)) for pi, mu, sigma in zip(pis1, mus1, sigmas1): z += pi*mvn(mu, sigma).pdf(_ys) z = z.reshape((intervals, intervals)) ax = plt.subplot(111) plt.scatter(xs[:,0], xs[:,1], alpha=0.2) plt.contour(X, Y, z, N=10) plt.axis([-8,6,-6,8]) ax.axes.set_aspect('equal') plt.tight_layout()
%%time ll2, pis2, mus2, sigmas2 = em_gmm_vect(xs, pis, mus, sigmas)
intervals = 101 ys = np.linspace(-8,8,intervals) X, Y = np.meshgrid(ys, ys) _ys = np.vstack([X.ravel(), Y.ravel()]).T z = np.zeros(len(_ys)) for pi, mu, sigma in zip(pis2, mus2, sigmas2): z += pi*mvn(mu, sigma).pdf(_ys) z = z.reshape((intervals, intervals)) ax = plt.subplot(111) plt.scatter(xs[:,0], xs[:,1], alpha=0.2) plt.contour(X, Y, z, N=10) plt.axis([-8,6,-6,8]) ax.axes.set_aspect('equal') plt.tight_layout()
%%time ll3, pis3, mus3, sigmas3 = em_gmm_eins(xs, pis, mus, sigmas)
# %timeit em_gmm_orig(xs, pis, mus, sigmas) %timeit em_gmm_vect(xs, pis, mus, sigmas) %timeit em_gmm_eins(xs, pis, mus, sigmas)
intervals = 101 ys = np.linspace(-8,8,intervals) X, Y = np.meshgrid(ys, ys) _ys = np.vstack([X.ravel(), Y.ravel()]).T z = np.zeros(len(_ys)) for pi, mu, sigma in zip(pis3, mus3, sigmas3): z += pi*mvn(mu, sigma).pdf(_ys) z = z.reshape((intervals, intervals)) ax = plt.subplot(111) plt.scatter(xs[:,0], xs[:,1], alpha=0.2) plt.contour(X, Y, z, N=10) plt.axis([-8,6,-6,8]) ax.axes.set_aspect('equal') plt.tight_layout()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论