返回介绍

solution / 2400-2499 / 2458.Height of Binary Tree After Subtree Removal Queries / README_EN

发布于 2024-06-17 01:03:05 字数 9462 浏览 0 评论 0 收藏 0

2458. Height of Binary Tree After Subtree Removal Queries

中文文档

Description

You are given the root of a binary tree with n nodes. Each node is assigned a unique value from 1 to n. You are also given an array queries of size m.

You have to perform m independent queries on the tree where in the ith query you do the following:

  • Remove the subtree rooted at the node with the value queries[i] from the tree. It is guaranteed that queries[i] will not be equal to the value of the root.

Return _an array _answer_ of size _m_ where _answer[i]_ is the height of the tree after performing the _ith_ query_.

Note:

  • The queries are independent, so the tree returns to its initial state after each query.
  • The height of a tree is the number of edges in the longest simple path from the root to some node in the tree.

 

Example 1:

Input: root = [1,3,4,2,null,6,5,null,null,null,null,null,7], queries = [4]
Output: [2]
Explanation: The diagram above shows the tree after removing the subtree rooted at node with value 4.
The height of the tree is 2 (The path 1 -> 3 -> 2).

Example 2:

Input: root = [5,8,9,2,1,3,7,4,6], queries = [3,2,4,8]
Output: [3,2,3,2]
Explanation: We have the following queries:
- Removing the subtree rooted at node with value 3. The height of the tree becomes 3 (The path 5 -> 8 -> 2 -> 4).
- Removing the subtree rooted at node with value 2. The height of the tree becomes 2 (The path 5 -> 8 -> 1).
- Removing the subtree rooted at node with value 4. The height of the tree becomes 3 (The path 5 -> 8 -> 2 -> 6).
- Removing the subtree rooted at node with value 8. The height of the tree becomes 2 (The path 5 -> 9 -> 3).

 

Constraints:

  • The number of nodes in the tree is n.
  • 2 <= n <= 105
  • 1 <= Node.val <= n
  • All the values in the tree are unique.
  • m == queries.length
  • 1 <= m <= min(n, 104)
  • 1 <= queries[i] <= n
  • queries[i] != root.val

Solutions

Solution 1: Two DFS Traversals

First, we perform a DFS traversal to determine the depth of each node, which we store in a hash table $d$, where $d[x]$ represents the depth of node $x$.

Then we design a function $dfs(root, depth, rest)$, where:

  • root represents the current node;
  • depth represents the depth of the current node;
  • rest represents the height of the tree after deleting the current node.

The function's computation logic is as follows:

If the node is null, return directly. Otherwise, we increment depth by $1$, and then store rest in res.

Next, we recursively traverse the left and right subtrees.

Before recursing into the left subtree, we calculate the depth from the root node to the deepest node in the current node's right subtree, i.e., $depth+d[root.right]$, and then compare it with rest, taking the larger value as the rest for the left subtree.

Before recursing into the right subtree, we calculate the depth from the root node to the deepest node in the current node's left subtree, i.e., $depth+d[root.left]$, and then compare it with rest, taking the larger value as the rest for the right subtree.

Finally, we return the result values corresponding to each query node.

The time complexity is $O(n+m)$, and the space complexity is $O(n)$. Here, $n$ and $m$ are the number of nodes in the tree and the number of queries, respectively.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def treeQueries(self, root: Optional[TreeNode], queries: List[int]) -> List[int]:
    def f(root):
      if root is None:
        return 0
      l, r = f(root.left), f(root.right)
      d[root] = 1 + max(l, r)
      return d[root]

    def dfs(root, depth, rest):
      if root is None:
        return
      depth += 1
      res[root.val] = rest
      dfs(root.left, depth, max(rest, depth + d[root.right]))
      dfs(root.right, depth, max(rest, depth + d[root.left]))

    d = defaultdict(int)
    f(root)
    res = [0] * (len(d) + 1)
    dfs(root, -1, 0)
    return [res[v] for v in queries]
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private Map<TreeNode, Integer> d = new HashMap<>();
  private int[] res;

  public int[] treeQueries(TreeNode root, int[] queries) {
    f(root);
    res = new int[d.size() + 1];
    d.put(null, 0);
    dfs(root, -1, 0);
    int m = queries.length;
    int[] ans = new int[m];
    for (int i = 0; i < m; ++i) {
      ans[i] = res[queries[i]];
    }
    return ans;
  }

  private void dfs(TreeNode root, int depth, int rest) {
    if (root == null) {
      return;
    }
    ++depth;
    res[root.val] = rest;
    dfs(root.left, depth, Math.max(rest, depth + d.get(root.right)));
    dfs(root.right, depth, Math.max(rest, depth + d.get(root.left)));
  }

  private int f(TreeNode root) {
    if (root == null) {
      return 0;
    }
    int l = f(root.left), r = f(root.right);
    d.put(root, 1 + Math.max(l, r));
    return d.get(root);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<int> treeQueries(TreeNode* root, vector<int>& queries) {
    unordered_map<TreeNode*, int> d;
    function<int(TreeNode*)> f = [&](TreeNode* root) -> int {
      if (!root) return 0;
      int l = f(root->left), r = f(root->right);
      d[root] = 1 + max(l, r);
      return d[root];
    };
    f(root);
    vector<int> res(d.size() + 1);
    function<void(TreeNode*, int, int)> dfs = [&](TreeNode* root, int depth, int rest) {
      if (!root) return;
      ++depth;
      res[root->val] = rest;
      dfs(root->left, depth, max(rest, depth + d[root->right]));
      dfs(root->right, depth, max(rest, depth + d[root->left]));
    };
    dfs(root, -1, 0);
    vector<int> ans;
    for (int v : queries) ans.emplace_back(res[v]);
    return ans;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func treeQueries(root *TreeNode, queries []int) (ans []int) {
  d := map[*TreeNode]int{}
  var f func(*TreeNode) int
  f = func(root *TreeNode) int {
    if root == nil {
      return 0
    }
    l, r := f(root.Left), f(root.Right)
    d[root] = 1 + max(l, r)
    return d[root]
  }
  f(root)
  res := make([]int, len(d)+1)
  var dfs func(*TreeNode, int, int)
  dfs = func(root *TreeNode, depth, rest int) {
    if root == nil {
      return
    }
    depth++
    res[root.Val] = rest
    dfs(root.Left, depth, max(rest, depth+d[root.Right]))
    dfs(root.Right, depth, max(rest, depth+d[root.Left]))
  }
  dfs(root, -1, 0)
  for _, v := range queries {
    ans = append(ans, res[v])
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文