返回介绍

solution / 2500-2599 / 2555.Maximize Win From Two Segments / README_EN

发布于 2024-06-17 01:03:04 字数 6423 浏览 0 评论 0 收藏 0

2555. Maximize Win From Two Segments

中文文档

Description

There are some prizes on the X-axis. You are given an integer array prizePositions that is sorted in non-decreasing order, where prizePositions[i] is the position of the ith prize. There could be different prizes at the same position on the line. You are also given an integer k.

You are allowed to select two segments with integer endpoints. The length of each segment must be k. You will collect all prizes whose position falls within at least one of the two selected segments (including the endpoints of the segments). The two selected segments may intersect.

  • For example if k = 2, you can choose segments [1, 3] and [2, 4], and you will win any prize i that satisfies 1 <= prizePositions[i] <= 3 or 2 <= prizePositions[i] <= 4.

Return _the maximum number of prizes you can win if you choose the two segments optimally_.

 

Example 1:

Input: prizePositions = [1,1,2,2,3,3,5], k = 2
Output: 7
Explanation: In this example, you can win all 7 prizes by selecting two segments [1, 3] and [3, 5].

Example 2:

Input: prizePositions = [1,2,3,4], k = 0
Output: 2
Explanation: For this example, one choice for the segments is [3, 3] and [4, 4], and you will be able to get 2 prizes. 

 

Constraints:

  • 1 <= prizePositions.length <= 105
  • 1 <= prizePositions[i] <= 109
  • 0 <= k <= 109
  • prizePositions is sorted in non-decreasing order.

 

Solutions

Solution 1: Dynamic Programming + Binary Search

We define $f[i]$ as the maximum number of prizes that can be obtained by selecting a segment of length $k$ from the first $i$ prizes. Initially, $f[0] = 0$. We define the answer variable as $ans = 0$.

Next, we enumerate the position $x$ of each prize, and use binary search to find the leftmost prize index $j$ such that $prizePositions[j] \geq x - k$. At this point, we update the answer $ans = \max(ans, f[j] + i - j)$, and update $f[i] = \max(f[i - 1], i - j)$.

Finally, we return $ans$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the number of prizes.

class Solution:
  def maximizeWin(self, prizePositions: List[int], k: int) -> int:
    n = len(prizePositions)
    f = [0] * (n + 1)
    ans = 0
    for i, x in enumerate(prizePositions, 1):
      j = bisect_left(prizePositions, x - k)
      ans = max(ans, f[j] + i - j)
      f[i] = max(f[i - 1], i - j)
    return ans
class Solution {
  public int maximizeWin(int[] prizePositions, int k) {
    int n = prizePositions.length;
    int[] f = new int[n + 1];
    int ans = 0;
    for (int i = 1; i <= n; ++i) {
      int x = prizePositions[i - 1];
      int j = search(prizePositions, x - k);
      ans = Math.max(ans, f[j] + i - j);
      f[i] = Math.max(f[i - 1], i - j);
    }
    return ans;
  }

  private int search(int[] nums, int x) {
    int left = 0, right = nums.length;
    while (left < right) {
      int mid = (left + right) >> 1;
      if (nums[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}
class Solution {
public:
  int maximizeWin(vector<int>& prizePositions, int k) {
    int n = prizePositions.size();
    vector<int> f(n + 1);
    int ans = 0;
    for (int i = 1; i <= n; ++i) {
      int x = prizePositions[i - 1];
      int j = lower_bound(prizePositions.begin(), prizePositions.end(), x - k) - prizePositions.begin();
      ans = max(ans, f[j] + i - j);
      f[i] = max(f[i - 1], i - j);
    }
    return ans;
  }
};
func maximizeWin(prizePositions []int, k int) (ans int) {
  n := len(prizePositions)
  f := make([]int, n+1)
  for i, x := range prizePositions {
    j := sort.Search(n, func(h int) bool { return prizePositions[h] >= x-k })
    ans = max(ans, f[j]+i-j+1)
    f[i+1] = max(f[i], i-j+1)
  }
  return
}
function maximizeWin(prizePositions: number[], k: number): number {
  const n = prizePositions.length;
  const f: number[] = Array(n + 1).fill(0);
  let ans = 0;
  const search = (x: number): number => {
    let left = 0;
    let right = n;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (prizePositions[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  };
  for (let i = 1; i <= n; ++i) {
    const x = prizePositions[i - 1];
    const j = search(x - k);
    ans = Math.max(ans, f[j] + i - j);
    f[i] = Math.max(f[i - 1], i - j);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文