第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
信用债风险模型初探之:Z-Score Model
0. 引言
2015年3月4日晚间,ST超日(上海超日太阳能科技股份有限公司)董事会发布公告称,“11超日债”本期利息将无法于原定付息日2014年3月7日按期全额支付。至此,“11超日债”正式成为国内首例违约债券。
1. 什么是 Zscore Model
简单的说,zscore model 是一种用于估计债券发行人违约风险的信用风险模型。
2. 本文提供的 Zscore Model
下面我们首先从原理,模型公式,划分区间三个方面来简单介绍一下本模块中的两个 Z-score 模型; 然后我们从如何获取数据,清洗数据;如何计算债券发行人 Z-score 值;如何作图来操练这个模型;
2.1 All Corporate Bonds
模型原理
- 不需要发行人上市交易数据
- 离散分析方法
模型公式
ZScore = 0.517 - 0.460*x1 + 9.320*2/x2 + 0.388*x3 + 1.158*x4
x1: 负债合计/资产总计
x2: 净利润/0.5*(资产总计 + 资产总计[上期])
x3: 营运资本/资产总计
x4: 未分配利润/资产总计
coef=[0.517, -0.460, 18.640, 0.388, 1.158]
划分区间
Z-score < 0.5
: 已经违约0.5 < Z-score < 0.9
: 有违约的可能性Z-score > 0.9
: 财务健康,短期内不会出现违约情况
2.2 Corporate Bonds with Equity Listings
模型原理
- 需要发行人上市交易数据
- 离散分析方法
模型公式
ZScore = 0.2086*x1 + 4.3465*x2 + 4.9601*x3
x1: 总市值/负债合计
x2: 营业总收入/资产总计
x3: (资产总计-资产总计[上期])/资产总计[上期]
coef = [0.2086, 4.3465, 4.9601]
划分区间
Z-score < 1.5408
: 已经违约Z-score > 1.5408
: 财务健康,短期内不会出现违约情况
3. 未来
Z-Score 是一个比较基础,通用的模型,本文只是对其原理和实现的一个简单探索,要想真正 build 一个足够 robust 的模型还需要做很多工作。不过 uqer 提供了完善的财务数据,行情数据以及 100 多个相关因子,相信会给大家建立模型上节省不少时间。
```py
import time import json import random import datetime as dt
import numpy as np import pandas as pd pd.options.display.max_columns = 100 pd.options.display.max_rows = 100 from matplotlib.pyplot import * import seaborn
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论