数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
一、数值稳定性
在计算机中执行数学运算需要使用有限的比特位来表达实数,这会引入近似误差。
近似误差可以在多步数值运算中传递、积累,从而导致理论上成功的算法失败。因此数值算法设计时要考虑将累计误差最小化。
当从头开始实现一个数值算法时,需要考虑数值稳定性。当使用现有的数值计算库(如
tensorflow
)时,不需要考虑数值稳定性。
1.1 上溢出、下溢出
一种严重的误差是下溢出
underflow
:当接近零的数字四舍五入为零时,发生下溢出。许多函数在参数为零和参数为一个非常小的正数时,行为是不同的。如:对数函数要求自变量大于零,除法中要求除数非零。
一种严重的误差是上溢出
overflow
:当数值非常大,超过了计算机的表示范围时,发生上溢出。一个数值稳定性的例子是
softmax
函数。设 $ MathJax-Element-71 $ ,则
$ \text{softmax}(\mathbf{\vec x})=\left(\frac{\exp(x_1)}{\sum_{j=1}^{n}\exp(x_j)},\frac{\exp(x_2)}{\sum_{j=1}^{n}\exp(x_j)},\cdots,\frac{\exp(x_n)}{\sum_{j=1}^{n}\exp(x_j)}\right)^{T} $softmax
函数定义为:当所有的 $ MathJax-Element-54 $ 都等于常数 $ MathJax-Element-41 $ 时,
softmax
函数的每个分量的理论值都为 $ MathJax-Element-37 $ 。- 考虑 $ MathJax-Element-41 $ 是一个非常大的负数(比如趋近负无穷),此时 $ MathJax-Element-42 $ 下溢出。此时 $ MathJax-Element-43 $ 分母为零,结果未定义。
- 考虑 $ MathJax-Element-41 $ 是一个非常大的正数(比如趋近正无穷),此时 $ MathJax-Element-42 $ 上溢出。 $ MathJax-Element-43 $ 的结果未定义。
为了解决
$ \text{softmax}(\mathbf{\vec z})_i=\frac{\exp(z_i)}{\sum_{j=1}^{n}\exp(z_j)}=\frac{\exp(\max_k x_k)\exp(z_i)}{\exp(\max_k x_k)\sum_{j=1}^{n}\exp(z_j)}\\ =\frac{\exp(z_i+\max_k x_k)}{\sum_{j=1}^{n}\exp(z_j+\max_k x_k)}\\ =\frac{\exp(x_i)}{\sum_{j=1}^{n}\exp(x_j)}\\ =\text{softmax}(\mathbf{\vec x})_i $softmax
函数的数值稳定性问题,令 $ MathJax-Element-44 $ ,则有 $ MathJax-Element-45 $ 的第 $ MathJax-Element-438 $ 个分量为:- 当 $ MathJax-Element-63 $ 的分量较小时, $ MathJax-Element-48 $ 的分量至少有一个为零,从而导致 $ MathJax-Element-51 $ 的分母至少有一项为 1,从而解决了下溢出的问题。
- 当 $ MathJax-Element-63 $ 的分量较大时, $ MathJax-Element-51 $ 相当于分子分母同时除以一个非常大的数 $ MathJax-Element-52 $ ,从而解决了上溢出。
当 $ MathJax-Element-63 $ 的分量 $ MathJax-Element-54 $ 较小时, $ MathJax-Element-55 $ 的计算结果可能为 0 。此时 $ MathJax-Element-56 $ 趋向于负无穷,因此存在数值稳定性问题。
- 通常需要设计专门的函数来计算 $ MathJax-Element-57 $ ,而不是将 $ MathJax-Element-62 $ 的结果传递给 $ MathJax-Element-59 $ 函数。
- $ MathJax-Element-60 $ 函数应用非常广泛。通常将 $ MathJax-Element-62 $ 函数的输出作为模型的输出。由于一般使用样本的交叉熵作为目标函数,因此需要用到 $ MathJax-Element-62 $ 输出的对数。
softmax
名字的来源是hardmax
。hardmax
把一个向量 $ MathJax-Element-63 $ 映射成向量 $ MathJax-Element-64 $ 。即: $ MathJax-Element-194 $ 最大元素的位置填充1
,其它位置填充0
。softmax
会在这些位置填充0.0~1.0
之间的值(如:某个概率值)。
1.2 Conditioning
Conditioning
刻画了一个函数的如下特性:当函数的输入发生了微小的变化时,函数的输出的变化有多大。对于
Conditioning
较大的函数,在数值计算中可能有问题。因为函数输入的舍入误差可能导致函数输出的较大变化。对于方阵 $ MathJax-Element-66 $ ,其条件数
$ \text{condition number}=\max_{1\le i,j\le n,i\ne j}\left|\frac{\lambda_i}{\lambda_j} \right| $condition number
为:其中 $ MathJax-Element-67 $ 为 $ MathJax-Element-447 $ 的特征值。
- 方阵的条件数就是最大的特征值除以最小的特征值。
- 当方阵的条件数很大时,矩阵的求逆将对误差特别敏感(即: $ MathJax-Element-447 $ 的一个很小的扰动,将导致其逆矩阵一个非常明显的变化)。
- 条件数是矩阵本身的特性,它会放大那些包含矩阵求逆运算过程中的误差。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论