- GUI
- Windows API tutorial
- Introduction to Windows API
- Windows API main functions
- System functions in Windows API
- Strings in Windows API
- Date & time in Windows API
- A window in Windows API
- First steps in UI
- Windows API menus
- Windows API dialogs
- Windows API controls I
- Windows API controls II
- Windows API controls III
- Advanced controls in Windows API
- Custom controls in Windows API
- The GDI in Windows API
- PyQt4 tutorial
- PyQt5 tutorial
- Qt4 tutorial
- Introduction to Qt4 toolkit
- Qt4 utility classes
- Strings in Qt4
- Date and time in Qt4
- Working with files and directories in Qt4
- First programs in Qt4
- Menus and toolbars in Qt4
- Layout management in Qt4
- Events and signals in Qt4
- Qt4 Widgets
- Qt4 Widgets II
- Painting in Qt4
- Custom widget in Qt4
- The Breakout game in Qt4
- Qt5 tutorial
- Introduction to Qt5 toolkit
- Strings in Qt5
- Date and time in Qt5
- Containers in Qt5
- Working with files and directories in Qt5
- First programs in Qt5
- Menus and toolbars in Qt5
- Layout management in Qt5
- Events and signals in Qt5
- Qt5 Widgets
- Qt5 Widgets II
- Painting in Qt5
- Custom widget in Qt5
- Snake in Qt5
- The Breakout game in Qt5
- PySide tutorial
- Tkinter tutorial
- Tcl/Tk tutorial
- Qt Quick tutorial
- Java Swing tutorial
- JavaFX tutorial
- Java SWT tutorial
- wxWidgets tutorial
- Introduction to wxWidgets
- wxWidgets helper classes
- First programs in wxWidgets
- Menus and toolbars in wxWidgets
- Layout management in wxWidgets
- Events in wxWidgets
- Dialogs in wxWidgets
- wxWidgets widgets
- wxWidgets widgets II
- Drag and Drop in wxWidgets
- Device Contexts in wxWidgets
- Custom widgets in wxWidgets
- The Tetris game in wxWidgets
- wxPython tutorial
- Introduction to wxPython
- First Steps
- Menus and toolbars
- Layout management in wxPython
- Events in wxPython
- wxPython dialogs
- Widgets
- Advanced widgets in wxPython
- Drag and drop in wxPython
- Internationalisation
- Application skeletons in wxPython
- The GDI
- Mapping modes
- Creating custom widgets
- Tips and Tricks
- wxPython Gripts
- The Tetris game in wxPython
- C# Winforms Mono tutorial
- Java Gnome tutorial
- Introduction to Java Gnome
- First steps in Java Gnome
- Layout management in Java Gnome
- Layout management II in Java Gnome
- Menus in Java Gnome
- Toolbars in Java Gnome
- Events in Java Gnome
- Widgets in Java Gnome
- Widgets II in Java Gnome
- Advanced widgets in Java Gnome
- Dialogs in Java Gnome
- Pango in Java Gnome
- Drawing with Cairo in Java Gnome
- Drawing with Cairo II
- Nibbles in Java Gnome
- QtJambi tutorial
- GTK+ tutorial
- Ruby GTK tutorial
- GTK# tutorial
- Visual Basic GTK# tutorial
- PyGTK tutorial
- Introduction to PyGTK
- First steps in PyGTK
- Layout management in PyGTK
- Menus in PyGTK
- Toolbars in PyGTK
- Signals & events in PyGTK
- Widgets in PyGTK
- Widgets II in PyGTK
- Advanced widgets in PyGTK
- Dialogs in PyGTK
- Pango
- Pango II
- Drawing with Cairo in PyGTK
- Drawing with Cairo II
- Snake game in PyGTK
- Custom widget in PyGTK
- PHP GTK tutorial
- C# Qyoto tutorial
- Ruby Qt tutorial
- Visual Basic Qyoto tutorial
- Mono IronPython Winforms tutorial
- Introduction
- First steps in IronPython Mono Winforms
- Layout management
- Menus and toolbars
- Basic Controls in Mono Winforms
- Basic Controls II in Mono Winforms
- Advanced Controls in Mono Winforms
- Dialogs
- Drag & drop in Mono Winforms
- Painting
- Painting II in IronPython Mono Winforms
- Snake in IronPython Mono Winforms
- The Tetris game in IronPython Mono Winforms
- FreeBASIC GTK tutorial
- Jython Swing tutorial
- JRuby Swing tutorial
- Visual Basic Winforms tutorial
- JavaScript GTK tutorial
- Ruby HTTPClient tutorial
- Ruby Faraday tutorial
- Ruby Net::HTTP tutorial
- Java 2D games tutorial
- Java 2D tutorial
- Cairo graphics tutorial
- PyCairo tutorial
- HTML5 canvas tutorial
- Python tutorial
- Python language
- Interactive Python
- Python lexical structure
- Python data types
- Strings in Python
- Python lists
- Python dictionaries
- Python operators
- Keywords in Python
- Functions in Python
- Files in Python
- Object-oriented programming in Python
- Modules
- Packages in Python
- Exceptions in Python
- Iterators and Generators
- Introspection in Python
- Ruby tutorial
- PHP tutorial
- Visual Basic tutorial
- Visual Basic
- Visual Basic lexical structure
- Basics
- Visual Basic data types
- Strings in Visual Basic
- Operators
- Flow control
- Visual Basic arrays
- Procedures & functions in Visual Basic
- Organizing code in Visual Basic
- Object-oriented programming
- Object-oriented programming II in Visual Basic
- Collections in Visual Basic
- Input & output
- Tcl tutorial
- C# tutorial
- Java tutorial
- AWK tutorial
- Jetty tutorial
- Tomcat Derby tutorial
- Jtwig tutorial
- Android tutorial
- Introduction to Android development
- First Android application
- Android Button widgets
- Android Intents
- Layout management in Android
- Android Spinner widget
- SeekBar widget
- Android ProgressBar widget
- Android ListView widget
- Android Pickers
- Android menus
- Dialogs
- Drawing in Android
- Java EE 5 tutorials
- Introduction
- Installing Java
- Installing NetBeans 6
- Java Application Servers
- Resin CGIServlet
- JavaServer Pages, (JSPs)
- Implicit objects in JSPs
- Shopping cart
- JSP & MySQL Database
- Java Servlets
- Sending email in a Servlet
- Creating a captcha in a Servlet
- DataSource & DriverManager
- Java Beans
- Custom JSP tags
- Object relational mapping with iBATIS
- Jsoup tutorial
- MySQL tutorial
- MySQL quick tutorial
- MySQL storage engines
- MySQL data types
- Creating, altering and dropping tables in MySQL
- MySQL expressions
- Inserting, updating, and deleting data in MySQL
- The SELECT statement in MySQL
- MySQL subqueries
- MySQL constraints
- Exporting and importing data in MySQL
- Joining tables in MySQL
- MySQL functions
- Views in MySQL
- Transactions in MySQL
- MySQL stored routines
- MySQL Python tutorial
- MySQL Perl tutorial
- MySQL C API programming tutorial
- MySQL Visual Basic tutorial
- MySQL PHP tutorial
- MySQL Java tutorial
- MySQL Ruby tutorial
- MySQL C# tutorial
- SQLite tutorial
- SQLite C tutorial
- SQLite PHP tutorial
- SQLite Python tutorial
- SQLite Perl tutorial
- SQLite Ruby tutorial
- SQLite C# tutorial
- SQLite Visual Basic tutorial
- PostgreSQL C tutorial
- PostgreSQL Python tutorial
- PostgreSQL Ruby tutorial
- PostgreSQL PHP tutorial
- PostgreSQL Java tutorial
- Apache Derby tutorial
- SQLAlchemy tutorial
- MongoDB PHP tutorial
- MongoDB Java tutorial
- MongoDB JavaScript tutorial
- MongoDB Ruby tutorial
- Spring JdbcTemplate tutorial
- JDBI tutorial
SQLite Python tutorial
This is a Python programming tutorial for the SQLite database. It covers the basics of SQLite programming with the Python language. You might also want to check the Python tutorial , SQLite tutorial or MySQL Python tutorial or PostgreSQL Python tutorial on ZetCode.
Prerequisites
To work with this tutorial, we must have Python language, SQLite database, pysqlite
language binding and the sqlite3
command line tool installed on the system. If we have Python 2.5+ then we only need to install the sqlite3
command line tool. Both the SQLite library and the pysqlite
language binding are built into the Python languge.
$ python Python 2.7.3 (default, Jan 2 2013, 16:53:07) [GCC 4.7.2] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import sqlite3 >>> sqlite3.version '2.6.0' >>> sqlite3.sqlite_version '3.7.13'
In the shell, we launch the Python interactive interpreter. We can see the Python version. In our case it is Python 2.7.3. The sqlite.version
is the version of the pysqlite
(2.6.0), which is the binding of the Python language to the SQLite database. The sqlite3.sqlite_version
gives us the version of the SQLite database library. In our case the version is 3.7.13.
Now we are going to use the sqlite3
command line tool to create a new database.
$ sqlite3 test.db SQLite version 3.7.13 2012-06-11 02:05:22 Enter ".help" for instructions Enter SQL statements terminated with a ";"
We provide a parameter to the sqlite3 tool
; test.db
is a database name. It is a file on our disk. If it is present, it is opened. If not, it is created.
sqlite> .tables sqlite> .exit $ ls test.db
The .tables
command gives a list of tables in the test.db database. There are currently no tables. The .exit
command terminates the interactive session of the sqlite3 command line tool. The ls
Unix command shows the contents of the current working directory. We can see the test.db
file. All data will be stored in this single file.
Version
In the first code example, we will get the version of the SQLite database.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = None try: con = lite.connect('test.db') cur = con.cursor() cur.execute('SELECT SQLITE_VERSION()') data = cur.fetchone() print "SQLite version: %s" % data except lite.Error, e: print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
In the above Python script we connect to the previously created test.db
database. We execute an SQL statement which returns the version of the SQLite database.
import sqlite3 as lite
The sqlite3
module is used to work with the SQLite database.
con = None
We initialise the con
variable to None. In case we could not create a connection to the database (for example the disk is full), we would not have a connection variable defined. This would lead to an error in the finally clause.
con = lite.connect('test.db')
Here we connect to the test.db
database. The connect()
method returns a connection object.
cur = con.cursor() cur.execute('SELECT SQLITE_VERSION()')
From the connection, we get the cursor object. The cursor is used to traverse the records from the result set. We call the execute()
method of the cursor and execute the SQL statement.
data = cur.fetchone()
We fetch the data. Since we retrieve only one record, we call the fetchone()
method.
print "SQLite version: %s" % data
We print the data that we have retrieved to the console.
except lite.Error, e: print "Error %s:" % e.args[0] sys.exit(1)
In case of an exception, we print an error message and exit the script with an error code 1.
finally: if con: con.close()
In the final step, we release the resources.
In the second example, we again get the version of the SQLite database. This time we will use the with
keyword.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute('SELECT SQLITE_VERSION()') data = cur.fetchone() print "SQLite version: %s" % data
The script returns the current version of the SQLite database. With the use of the with
keyword. The code is more compact.
with con:
With the with
keyword, the Python interpreter automatically releases the resources. It also provides error handling.
Inserting data
We will create a Cars
table and insert several rows to it.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)") cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)") cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)") cur.execute("INSERT INTO Cars VALUES(3,'Skoda',9000)") cur.execute("INSERT INTO Cars VALUES(4,'Volvo',29000)") cur.execute("INSERT INTO Cars VALUES(5,'Bentley',350000)") cur.execute("INSERT INTO Cars VALUES(6,'Citroen',21000)") cur.execute("INSERT INTO Cars VALUES(7,'Hummer',41400)") cur.execute("INSERT INTO Cars VALUES(8,'Volkswagen',21600)")
The above script creates a Cars
table and inserts 8 rows into the table.
cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)")
This SQL statement creates a new Cars
table. The table has three columns.
cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)") cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)")
These two lines insert two cars into the table. Using the with
keyword, the changes are automatically committed. Otherwise, we would have to commit them manually.
sqlite> .mode column sqlite> .headers on
We verify the written data with the sqlite3
tool. First we modify the way the data is displayed in the console. We use the column mode and turn on the headers.
sqlite> SELECT * FROM Cars; Id Name Price ---------- ---------- ---------- 1 Audi 52642 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600
This is the data that we have written to the Cars
table.
We are going to create the same table. This time using the convenience executemany()
method.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys cars = ( (1, 'Audi', 52642), (2, 'Mercedes', 57127), (3, 'Skoda', 9000), (4, 'Volvo', 29000), (5, 'Bentley', 350000), (6, 'Hummer', 41400), (7, 'Volkswagen', 21600) ) con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)") cur.executemany("INSERT INTO Cars VALUES(?, ?, ?)", cars)
This script drops a Cars
table if it exists and (re)creates it.
cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)")
The first SQL statement drops the Cars table if it exists. The second SQL statement creates the Cars table.
cur.executemany("INSERT INTO Cars VALUES(?, ?, ?)", cars)
We insert 8 rows into the table using the convenience executemany()
method. The first parameter of this method is a parameterized SQL statement. The second parameter is the data, in the form of tuple of tuples.
We provide another way to create our Cars
table. We commit the changes manually and provide our own error handling.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys try: con = lite.connect('test.db') cur = con.cursor() cur.executescript(""" DROP TABLE IF EXISTS Cars; CREATE TABLE Cars(Id INT, Name TEXT, Price INT); INSERT INTO Cars VALUES(1,'Audi',52642); INSERT INTO Cars VALUES(2,'Mercedes',57127); INSERT INTO Cars VALUES(3,'Skoda',9000); INSERT INTO Cars VALUES(4,'Volvo',29000); INSERT INTO Cars VALUES(5,'Bentley',350000); INSERT INTO Cars VALUES(6,'Citroen',21000); INSERT INTO Cars VALUES(7,'Hummer',41400); INSERT INTO Cars VALUES(8,'Volkswagen',21600); """) con.commit() except lite.Error, e: if con: con.rollback() print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
In the above script we (re)create the Cars
table using the executescript()
method.
cur.executescript(""" DROP TABLE IF EXISTS Cars; CREATE TABLE Cars(Id INT, Name TEXT, Price INT); INSERT INTO Cars VALUES(1,'Audi',52642); INSERT INTO Cars VALUES(2,'Mercedes',57127); ...
The executescript()
method allows us to execute the whole SQL code in one step.
con.commit()
Without the with
keyword, the changes must be committed using the commit()
method.
except lite.Error, e: if con: con.rollback() print "Error %s:" % e.args[0] sys.exit(1)
In case of an error, the changes are rolled back and an error message is printed to the terminal.
The last inserted row id
Sometimes, we need to determine the id of the last inserted row. In Python SQLite, we use the lastrowid
attribute of the cursor object.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect(':memory:') with con: cur = con.cursor() cur.execute("CREATE TABLE Friends(Id INTEGER PRIMARY KEY, Name TEXT);") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom');") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca');") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim');") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert');") lid = cur.lastrowid print "The last Id of the inserted row is %d" % lid
We create a Friends table in memory. The Id is automatically incremented.
cur.execute("CREATE TABLE Friends(Id INTEGER PRIMARY KEY, Name TEXT);")
In SQLite, INTEGER PRIMARY KEY
column is auto incremented. There is also an AUTOINCREMENT
keyword. When used in INTEGER PRIMARY KEY AUTOINCREMENT
a slightly different algorithm for Id creation is used.
cur.execute("INSERT INTO Friends(Name) VALUES ('Tom');") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca');") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim');") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert');")
When using auto-increment, we have to explicitly state the column names, omitting the one that is auto-incremented. The four statements insert four rows into the Friends
table.
lid = cur.lastrowid
Using the lastrowid
we get the last inserted row id.
$ ./lastrow.py The last Id of the inserted row is 4
We see the output of the script.
Retrieving data
Now that we have inserted some data into the database, we want to fetch it back.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("SELECT * FROM Cars") rows = cur.fetchall() for row in rows: print row
In this example, we retrieve all data from the Cars
table.
cur.execute("SELECT * FROM Cars")
This SQL statement selects all data from the Cars
table.
rows = cur.fetchall()
The fetchall()
method gets all records. It returns a result set. Technically, it is a tuple of tuples. Each of the inner tuples represent a row in the table.
for row in rows: print row
We print the data to the console, row by row.
$ ./retrieveall.py (1, u'Audi', 52642) (2, u'Mercedes', 57127) (3, u'Skoda', 9000) (4, u'Volvo', 29000) (5, u'Bentley', 350000) (6, u'Citroen', 21000) (7, u'Hummer', 41400) (8, u'Volkswagen', 21600)
This is the output of the example.
Returning all data at a time may not be feasible. We can fetch rows one by one.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("SELECT * FROM Cars") while True: row = cur.fetchone() if row == None: break print row[0], row[1], row[2]
In this script we connect to the database and fetch the rows of the Cars
table one by one.
while True:
We access the data from the while loop. When we read the last row, the loop is terminated.
row = cur.fetchone() if row == None: break
The fetchone()
method returns the next row from the table. If there is no more data left, it returns None
. In this case we break the loop.
print row[0], row[1], row[2]
The data is returned in the form of a tuple. Here we select records from the tuple. The first is the Id, the second is the car name and the third is the price of the car.
$ ./retrieveonebyone.py 1 Audi 52642 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600
This is the output of the example.
The dictionary cursor
The default cursor returns the data in a tuple of tuples. When we use a dictionary cursor, the data is sent in the form of Python dictionaries. This way we can refer to the data by their column names.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite con = lite.connect('test.db') with con: con.row_factory = lite.Row cur = con.cursor() cur.execute("SELECT * FROM Cars") rows = cur.fetchall() for row in rows: print "%s %s %s" % (row["Id"], row["Name"], row["Price"])
In this example, we print the contents of the Cars
table using the dictionary cursor.
con.row_factory = lite.Row
We select a dictionary cursor. Now we can access records by the names of columns.
for row in rows: print "%s %s %s" % (row["Id"], row["Name"], row["Price"])
The data is accessed by the column names.
Parameterized queries
Now we will concern ourselves with parameterized queries. When we use parameterized queries, we use placeholders instead of directly writing the values into the statements. Parameterized queries increase security and performance.
The Python sqlite3
module supports two types of placeholders: question marks and named placeholders.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys uId = 1 uPrice = 62300 con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("UPDATE Cars SET Price=? WHERE Id=?", (uPrice, uId)) con.commit() print "Number of rows updated: %d" % cur.rowcount
We update a price of one car. In this code example, we use the question mark placeholders.
cur.execute("UPDATE Cars SET Price=? WHERE Id=?", (uPrice, uId))
The question marks ?
are placeholders for values. The values are added to the placeholders.
print "Number of rows updated: %d" % cur.rowcount
The rowcount
property returns the number of updated rows. In our case one row was updated.
$ ./prepared.py Number of rows updated: 1 Id Name Price ---------- ---------- ---------- 1 Audi 62300
The price of the car was updated.
The second example uses parameterized statements with named placeholders.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys uId = 4 con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("SELECT Name, Price FROM Cars WHERE Id=:Id", {"Id": uId}) con.commit() row = cur.fetchone() print row[0], row[1]
We select a name and a price of a car using named placeholders.
cur.execute("SELECT Name, Price FROM Cars WHERE Id=:Id", {"Id": uId})
The named placeholders start with a colon character.
Inserting images
In this section, we are going to insert an image to the SQLite database. Note that some people argue against putting images into databases. Here we only show how to do it. We do not dwell into technical issues of whether to save images in databases or not.
sqlite> CREATE TABLE Images(Id INTEGER PRIMARY KEY, Data BLOB);
For this example, we create a new table called Images. For the images, we use the BLOB
data type, which stands for Binary Large Objects.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys def readImage(): try: fin = open("woman.jpg", "rb") img = fin.read() return img except IOError, e: print "Error %d: %s" % (e.args[0],e.args[1]) sys.exit(1) finally: if fin: fin.close() try: con = lite.connect('test.db') cur = con.cursor() data = readImage() binary = lite.Binary(data) cur.execute("INSERT INTO Images(Data) VALUES (?)", (binary,) ) con.commit() except lite.Error, e: if con: con.rollback() print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
In this script, we read an image from the current working directory and write it into the Images
table of the SQLite test.db
database.
try: fin = open("woman.jpg", "rb") img = fin.read() return img
We read binary data from the filesystem. We have a JPG image called woman.jpg
.
binary = lite.Binary(data)
The data is encoded using the SQLite Binary
object.
cur.execute("INSERT INTO Images(Data) VALUES (?)", (binary,) )
This SQL statement is used to insert the image into the database.
Reading images
In this section, we are going to perform the reverse operation. We will read an image from the database table.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys def writeImage(data): try: fout = open('woman2.jpg','wb') fout.write(data) except IOError, e: print "Error %d: %s" % (e.args[0], e.args[1]) sys.exit(1) finally: if fout: fout.close() try: con = lite.connect('test.db') cur = con.cursor() cur.execute("SELECT Data FROM Images LIMIT 1") data = cur.fetchone()[0] writeImage(data) except lite.Error, e: print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
We read image data from the Images
table and write it to another file, which we call woman2.jpg
.
try: fout = open('woman2.jpg','wb') fout.write(data)
We open a binary file in a writing mode. The data from the database is written to the file.
cur.execute("SELECT Data FROM Images LIMIT 1") data = cur.fetchone()[0]
These two lines select and fetch data from the Images table. We obtain the binary data from the first row.
Metadata
Metadata is information about the data in the database. Metadata in a SQLite contains information about the tables and columns, in which we store data. Number of rows affected by an SQL statement is a metadata. Number of rows and columns returned in a result set belong to metadata as well.
Metadata in SQLite can be obtained using the PRAGMA
command. SQLite objects may have attributes, which are metadata. Finally, we can also obtain specific metatada from querying the SQLite system sqlite_master
table.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute('PRAGMA table_info(Cars)') data = cur.fetchall() for d in data: print d[0], d[1], d[2]
In this example, we issue the PRAGMA table_info(tableName)
command, to get some metadata info about our Cars
table.
cur.execute('PRAGMA table_info(Cars)')
The PRAGMA table_info(tableName)
command returns one row for each column in the Cars
table. Columns in the result set include the column order number, column name, data type, whether or not the column can be NULL
, and the default value for the column.
for d in data: print d[0], d[1], d[2]
From the provided information, we print the column order number, column name and column data type.
$ ./colnames1.py 0 Id INT 1 Name TEXT 2 Price INT
Output of the example.
Next we will print all rows from the Cars
table with their column names.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute('SELECT * FROM Cars') col_names = [cn[0] for cn in cur.description] rows = cur.fetchall() print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2]) for row in rows: print "%2s %-10s %s" % row
We print the contents of the Cars
table to the console. Now, we include the names of the columns too. The records are aligned with the column names.
col_names = [cn[0] for cn in cur.description]
We get the column names from the description
property of the cursor object.
print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2])
This line prints three column names of the Cars
table.
for row in rows: print "%2s %-10s %s" % row
We print the rows using the for loop. The data is aligned with the column names.
$ ./colnames2.py Id Name Price 1 Audi 52642 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600
Output.
In our last example related to the metadata, we will list all tables in the test.db
database.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys con = lite.connect('test.db') with con: cur = con.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table'") rows = cur.fetchall() for row in rows: print row[0]
The code example prints all available tables in the current database to the terminal.
cur.execute("SELECT name FROM sqlite_master WHERE type='table'")
The table names are stored inside the system sqlite_master
table.
$ ./listtables.py Images sqlite_sequence Salaries Cars
These were the tables on my system.
Export and import of data
We can dump data in an SQL format to create a simple backup of our database tables.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys cars = ( (1, 'Audi', 52643), (2, 'Mercedes', 57642), (3, 'Skoda', 9000), (4, 'Volvo', 29000), (5, 'Bentley', 350000), (6, 'Hummer', 41400), (7, 'Volkswagen', 21600) ) def writeData(data): f = open('cars.sql', 'w') with f: f.write(data) con = lite.connect(':memory:') with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)") cur.executemany("INSERT INTO Cars VALUES(?, ?, ?)", cars) cur.execute("DELETE FROM Cars WHERE Price < 30000") data = '\n'.join(con.iterdump()) writeData(data)
In the above example, we recreate the Cars
table in the memory. We delete some rows from the table and dump the current state of the table into a cars.sql file. This file can serve as a current backup of the table.
def writeData(data): f = open('cars.sql', 'w') with f: f.write(data)
The data from the table is being written to the file.
con = lite.connect(':memory:')
We create a temporary table in the memory.
cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)") cur.executemany("INSERT INTO Cars VALUES(?, ?, ?)", cars) cur.execute("DELETE FROM Cars WHERE Price < 30000")
These lines create a Cars
table, insert values and delete rows, where the Price
is less than 30000 units.
data = '\n'.join(con.iterdump())
The con.iterdump()
returns an iterator to dump the database in an SQL text format. The built-in join()
function takes the iterator and joins all the strings in the iterator separated by a new line. This data is written to the cars.sql file in the writeData()
function.
$ cat cars.sql BEGIN TRANSACTION; CREATE TABLE Cars(Id INT, Name TEXT, Price INT); INSERT INTO "Cars" VALUES(1,'Audi',52643); INSERT INTO "Cars" VALUES(2,'Mercedes',57642); INSERT INTO "Cars" VALUES(5,'Bentley',350000); INSERT INTO "Cars" VALUES(6,'Hummer',41400); COMMIT;
The contents of the dumped in-memory Cars table.
Now we are going to perform a reverse operation. We will import the dumped table back into memory.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys def readData(): f = open('cars.sql', 'r') with f: data = f.read() return data con = lite.connect(':memory:') with con: cur = con.cursor() sql = readData() cur.executescript(sql) cur.execute("SELECT * FROM Cars") rows = cur.fetchall() for row in rows: print row
In this script, we read the contents of the cars.sql
file and execute it. This will recreate the dumped table.
def readData(): f = open('cars.sql', 'r') with f: data = f.read() return data
Inside the readData()
method we read the contents of the cars.sql
table.
cur.executescript(sql)
We call the executescript()
method to launch the SQL script.
cur.execute("SELECT * FROM Cars") rows = cur.fetchall() for row in rows: print row
We verify the data.
$ ./import.py (1, u'Audi', 52643) (2, u'Mercedes', 57642) (5, u'Bentley', 350000) (6, u'Hummer', 41400)
The output shows that we have successfully recreated the saved Cars table.
Transactions
A transaction is an atomic unit of database operations against the data in one or more databases. The effects of all the SQL statements in a transaction can be either all committed to the database or all rolled back.
In SQLite, any command other than the SELECT
will start an implicit transaction. Also, within a transaction a command like CREATE TABLE
..., VACUUM
, PRAGMA
, will commit previous changes before executing.
Manual transactions are started with the BEGIN TRANSACTION
statement and finished with the COMMIT
or ROLLBACK
statements.
SQLite supports three non-standard transaction levels: DEFERRED
, IMMEDIATE
and EXCLUSIVE
. SQLite Python module also supports an autocommit mode, where all changes to the tables are immediately effective.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys try: con = lite.connect('test.db') cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Friends") cur.execute("CREATE TABLE Friends(Id INTEGER PRIMARY KEY, Name TEXT)") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')") #con.commit() except lite.Error, e: if con: con.rollback() print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
We create a Friends
table and try to fill it with data. However, as we will see, the data is not committed.
#con.commit()
The commit()
method is commented. If we uncomment the line, the data will be written to the table.
sqlite> .tables Cars Friends Images Salaries Temporary sqlite> SELECT Count(Id) FROM Friends; Count(Id) ---------- 0
The table is created but the data is not written to the table.
In the second example we demonstrate that some commands implicitly commit previous changes to the database.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys try: con = lite.connect('test.db') cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Friends") cur.execute("CREATE TABLE Friends(Id INTEGER PRIMARY KEY, Name TEXT)") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')") cur.execute("CREATE TABLE IF NOT EXISTS Temporary(Id INT)") except lite.Error, e: if con: con.rollback() print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
Again, we do not call the commit()
command explicitly. But this time, the data is written to the Friends table.
cur.execute("CREATE TABLE IF NOT EXISTS Temporary(Id INT)")
This SQL statement will create a new table. It also commits the previous changes.
$ ./implcommit.py sqlite> SELECT * FROM Friends; Id Name ---------- ---------- 1 Tom 2 Rebecca 3 Jim 4 Robert
The data has been written to the Friends table.
In the autocommit mode, an SQL statement is executed immediately.
#!/usr/bin/python # -*- coding: utf-8 -*- import sqlite3 as lite import sys try: con = lite.connect('test.db', isolation_level=None) cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Friends") cur.execute("CREATE TABLE Friends(Id INTEGER PRIMARY KEY, Name TEXT)") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')") except lite.Error, e: print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
In this example, we connect to the database in the autocommit mode.
con = lite.connect('test.db', isolation_level=None)
We have an autocommit mode, when we set the isolation_level
to None.
$ ./autocommit.py sqlite> SELECT * FROM Friends; Id Name ---------- ---------- 1 Tom 2 Rebecca 3 Jim 4 Robert
The data was successfully committed to the Friends
table.
This was SQLite Python tutorial. ZetCode has a complete e-book for SQLite Python:
SQLite Python e-book .
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论