- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
Balanced Binary Tree
Source
- leetcode: Balanced Binary Tree | LeetCode OJ
- lintcode: (93) Balanced Binary Tree
Problem
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given binary tree A= {3,9,20,#,#,15,7}
, B= {3,#,20,15,7}
A) 3 B) 3
/ \ \
9 20 20
/ \ / \
15 7 15 7
The binary tree A is a height-balanced binary tree, but B is not.
题解 1 - 递归
根据题意,平衡树的定义是两子树的深度差最大不超过 1,显然使用递归进行分析较为方便。既然使用递归,那么接下来就需要分析递归调用的终止条件。和之前的 Maximum Depth of Binary Tree | Algorithm 类似, NULL == root
必然是其中一个终止条件,返回 0
;根据题意还需的另一终止条件应为「左右子树高度差大于 1」,但对应此终止条件的返回值是多少?—— INT_MAX
or INT_MIN
?想想都不合适,为何不在传入参数中传入 bool
指针或者 bool
引用咧?并以此变量作为最终返回值,此法看似可行,先来看看鄙人最开始想到的这种方法。
C++ Recursion with extra bool variable
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if this Binary tree is Balanced, or false.
*/
bool isBalanced(TreeNode *root) {
if (NULL == root) {
return true;
}
bool result = true;
maxDepth(root, result);
return result;
}
private:
int maxDepth(TreeNode *root, bool &isBalanced) {
if (NULL == root) {
return 0;
}
int leftDepth = maxDepth(root->left, isBalanced);
int rightDepth = maxDepth(root->right, isBalanced);
if (abs(leftDepth - rightDepth) > 1) {
isBalanced = false;
// speed up the recursion process
return INT_MAX;
}
return max(leftDepth, rightDepth) + 1;
}
};
源码解析
如果在某一次子树高度差大于 1 时,返回 INT_MAX
以减少不必要的计算过程,加速整个递归调用的过程。
初看起来上述代码好像还不错的样子,但是在看了九章的实现后,瞬间觉得自己弱爆了... 首先可以确定 abs(leftDepth - rightDepth) > 1
肯定是需要特殊处理的,如果返回 -1
呢?咋一看似乎在下一步返回 max(leftDepth, rightDepth) + 1
时会出错,再进一步想想,我们能否不让 max...
这一句执行呢?如果返回了 -1
,其接盘侠必然是 leftDepth
或者 rightDepth
中的一个,因此我们只需要在判断子树高度差大于 1 的同时也判断下左右子树深度是否为 -1
即可都返回 -1
,不得不说这种处理方法要精妙的多,赞!
C++
/**
* forked from http://www.jiuzhang.com/solutions/balanced-binary-tree/
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of binary tree.
* @return: True if this Binary tree is Balanced, or false.
*/
bool isBalanced(TreeNode *root) {
return (-1 != maxDepth(root));
}
private:
int maxDepth(TreeNode *root) {
if (NULL == root) {
return 0;
}
int leftDepth = maxDepth(root->left);
int rightDepth = maxDepth(root->right);
if (leftDepth == -1 || rightDepth == -1 || \
abs(leftDepth - rightDepth) > 1) {
return -1;
}
return max(leftDepth, rightDepth) + 1;
}
};
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return maxDepth(root) != -1;
}
private int maxDepth(TreeNode root) {
if (root == null) return 0;
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
if (leftDepth == -1 || rightDepth == -1 ||
Math.abs(leftDepth - rightDepth) > 1) {
return -1;
}
return 1 + Math.max(leftDepth, rightDepth);
}
}
源码分析
抓住两个核心:子树的高度以及高度之差,返回值应该包含这两种信息。
复杂度分析
遍历所有节点各一次,时间复杂度为 O(n)O(n)O(n), 使用了部分辅助变量,空间复杂度 O(1)O(1)O(1).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论