返回介绍

solution / 0000-0099 / 0088.Merge Sorted Array / README_EN

发布于 2024-06-17 01:04:39 字数 6739 浏览 0 评论 0 收藏 0

88. Merge Sorted Array

中文文档

Description

You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.

Merge nums1 and nums2 into a single array sorted in non-decreasing order.

The final sorted array should not be returned by the function, but instead be _stored inside the array _nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.

 

Example 1:

Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.

Example 2:

Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].

Example 3:

Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.

 

Constraints:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

 

Follow up: Can you come up with an algorithm that runs in O(m + n) time?

Solutions

Solution 1: Two Pointers

We use two pointers $i$ and $j$ pointing to the end of two arrays, and a pointer $k$ pointing to the end of the merged array.

Every time we compare the two elements at the end of the two arrays, and move the larger one to the end of the merged array. Then we move the pointer one step forward, and repeat this process until the two pointers reach the start of the arrays.

The time complexity is $O(m + n)$, where $m$ and $n$ are the lengths of two arrays. The space complexity is $O(1)$.

class Solution:
  def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
    k = m + n - 1
    i, j = m - 1, n - 1
    while j >= 0:
      if i >= 0 and nums1[i] > nums2[j]:
        nums1[k] = nums1[i]
        i -= 1
      else:
        nums1[k] = nums2[j]
        j -= 1
      k -= 1
class Solution {
  public void merge(int[] nums1, int m, int[] nums2, int n) {
    for (int i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
      nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
    }
  }
}
class Solution {
public:
  void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
    for (int i = m - 1, j = n - 1, k = m + n - 1; ~j; --k) {
      nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
    }
  }
};
func merge(nums1 []int, m int, nums2 []int, n int) {
  for i, j, k := m-1, n-1, m+n-1; j >= 0; k-- {
    if i >= 0 && nums1[i] > nums2[j] {
      nums1[k] = nums1[i]
      i--
    } else {
      nums1[k] = nums2[j]
      j--
    }
  }
}
/**
 Do not return anything, modify nums1 in-place instead.
 */
function merge(nums1: number[], m: number, nums2: number[], n: number): void {
  for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
    nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
  }
}
/**
 Do not return anything, modify nums1 in-place instead.
 */
function merge(nums1: number[], m: number, nums2: number[], n: number): void {
  nums1.length = m;
  nums2.length = n;
  nums1.push(...nums2);
  nums1.sort((a, b) => a - b);
}
impl Solution {
  pub fn merge(nums1: &mut Vec<i32>, m: i32, nums2: &mut Vec<i32>, n: i32) {
    let (mut m, mut n) = (m as usize, n as usize);
    for i in (0..m + n).rev() {
      nums1[i] = match (m == 0, n == 0) {
        (true, false) => {
          n -= 1;
          nums2[n]
        }
        (false, true) => {
          m -= 1;
          nums1[m]
        }
        (_, _) => {
          if nums1[m - 1] > nums2[n - 1] {
            m -= 1;
            nums1[m]
          } else {
            n -= 1;
            nums2[n]
          }
        }
      };
    }
  }
}
/**
 * @param {number[]} nums1
 * @param {number} m
 * @param {number[]} nums2
 * @param {number} n
 * @return {void} Do not return anything, modify nums1 in-place instead.
 */
var merge = function (nums1, m, nums2, n) {
  for (let i = m - 1, j = n - 1, k = m + n - 1; j >= 0; --k) {
    nums1[k] = i >= 0 && nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];
  }
};
class Solution {
  /**
   * @param Integer[] $nums1
   * @param Integer $m
   * @param Integer[] $nums2
   * @param Integer $n
   * @return NULL
   */
  function merge(&$nums1, $m, $nums2, $n) {
    while (count($nums1) > $m) {
      array_pop($nums1);
    }
    for ($i = 0; $i < $n; $i++) {
      array_push($nums1, $nums2[$i]);
    }
    asort($nums1);
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文