- 前言
- 目标读者
- 非目标读者
- 本书的结构
- 以实践为基础
- 硬件
- 杂谈:个人的一点看法
- Python 术语表
- Python 版本表
- 排版约定
- 使用代码示例
- 第一部分 序幕
- 第 1 章 Python 数据模型
- 第二部分 数据结构
- 第 2 章 序列构成的数组
- 第 3 章 字典和集合
- 第 4 章 文本和字节序列
- 第三部分 把函数视作对象
- 第 5 章 一等函数
- 第 6 章 使用一等函数实现设计模式
- 第 7 章 函数装饰器和闭包
- 第四部分 面向对象惯用法
- 第 8 章 对象引用、可变性和垃圾回收
- 第 9 章 符合 Python 风格的对象
- 第 10 章 序列的修改、散列和切片
- 第 11 章 接口:从协议到抽象基类
- 第 12 章 继承的优缺点
- 第 13 章 正确重载运算符
- 第五部分 控制流程
- 第 14 章 可迭代的对象、迭代器和生成器
- 14.1 Sentence 类第1版:单词序列
- 14.2 可迭代的对象与迭代器的对比
- 14.3 Sentence 类第2版:典型的迭代器
- 14.4 Sentence 类第3版:生成器函数
- 14.5 Sentence 类第4版:惰性实现
- 14.6 Sentence 类第5版:生成器表达式
- 14.7 何时使用生成器表达式
- 14.8 另一个示例:等差数列生成器
- 14.9 标准库中的生成器函数
- 14.10 Python 3.3 中新出现的句法:yield from
- 14.11 可迭代的归约函数
- 14.12 深入分析 iter 函数
- 14.13 案例分析:在数据库转换工具中使用生成器
- 14.14 把生成器当成协程
- 14.15 本章小结
- 14.16 延伸阅读
- 第 15 章 上下文管理器和 else 块
- 第 16 章 协程
- 第 17 章 使用期物处理并发
- 第 18 章 使用 asyncio 包处理并发
- 第六部分 元编程
- 第 19 章 动态属性和特性
- 第 20 章 属性描述符
- 第 21 章 类元编程
- 结语
- 延伸阅读
- 附录 A 辅助脚本
- Python 术语表
- 作者简介
- 关于封面
5.9 函数注解
Python 3 提供了一种句法,用于为函数声明中的参数和返回值附加元数据。示例 5-19 是示例 5-15 添加注解后的版本,二者唯一的区别在第一行。
示例 5-19 有注解的 clip 函数
def clip(text:str, max_len:'int > 0'=80) -> str: ➊ """在max_len前面或后面的第一个空格处截断文本 """ end = None if len(text) > max_len: space_before = text.rfind(' ', 0, max_len) if space_before >= 0: end = space_before else: space_after = text.rfind(' ', max_len) if space_after >= 0: end = space_after if end is None: # 没找到空格 end = len(text) return text[:end].rstrip()
➊ 有注解的函数声明。
函数声明中的各个参数可以在 : 之后增加注解表达式。如果参数有默认值,注解放在参数名和 = 号之间。如果想注解返回值,在 ) 和函数声明末尾的 : 之间添加 -> 和一个表达式。那个表达式可以是任何类型。注解中最常用的类型是类(如 str 或 int)和字符串(如 'int > 0')。在示例 5-19 中,max_len 参数的注解用的是字符串。
注解不会做任何处理,只是存储在函数的 __annotations__ 属性(一个字典)中:
>>> from clip_annot import clip >>> clip.__annotations__ {'text': <class 'str'>, 'max_len': 'int > 0', 'return': <class 'str'>}
'return' 键保存的是返回值注解,即示例 5-19 中函数声明里以 -> 标记的部分。
Python 对注解所做的唯一的事情是,把它们存储在函数的 __annotations__ 属性里。仅此而已,Python 不做检查、不做强制、不做验证,什么操作都不做。换句话说,注解对 Python 解释器没有任何意义。注解只是元数据,可以供 IDE、框架和装饰器等工具使用。写作本书时,标准库中还没有什么会用到这些元数据,唯有 inspect.signature() 函数知道怎么提取注解,如示例 5-20 所示。
示例 5-20 从函数签名中提取注解
>>> from clip_annot import clip >>> from inspect import signature >>> sig = signature(clip) >>> sig.return_annotation <class 'str'> >>> for param in sig.parameters.values(): ... note = repr(param.annotation).ljust(13) ... print(note, ':', param.name, '=', param.default) <class 'str'> : text = <class 'inspect._empty'> 'int > 0' : max_len = 80
signature 函数返回一个 Signature 对象,它有一个 return_annotation 属性和一个 parameters 属性,后者是一个字典,把参数名映射到 Parameter 对象上。每个 Parameter 对象自己也有 annotation 属性。示例 5-20 用到了这几个属性。
在未来,Bobo 等框架可以支持注解,并进一步自动处理请求。例如,使用 price:float 注解的参数可以自动把查询字符串转换成函数期待的 float 类型;quantity:'int > 0' 这样的字符串注解可以转换成对参数的验证。
函数注解的最大影响或许不是让 Bobo 等框架自动设置,而是为 IDE 和 lint 程序等工具中的静态类型检查功能提供额外的类型信息。
深入分析函数之后,本章余下的内容介绍标准库中为函数式编程提供支持的常用包。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论