手册
- 起步
- 进阶
- 构建工具
参考
- 动画
- 动画 / 轨道
- 音频
- 摄像机
- 常量
- 核心
- 核心 / BufferAttributes
- 附件
- 附件 / 核心
- 附件 / 曲线
- 附件 / 物体
- 几何体
- 立方缓冲几何体(BoxGeometry)
- 圆形缓冲几何体(CircleGeometry)
- 圆锥缓冲几何体(ConeGeometry)
- 圆柱缓冲几何体(CylinderGeometry)
- 十二面缓冲几何体(DodecahedronGeometry)
- 边缘几何体(EdgesGeometry)
- 挤压缓冲几何体(ExtrudeGeometry)
- 二十面缓冲几何体(IcosahedronGeometry)
- 车削缓冲几何体(LatheGeometry)
- 八面缓冲几何体(OctahedronGeometry)
- 参数化缓冲几何体(ParametricGeometry)
- 平面缓冲几何体(PlaneGeometry)
- 多面缓冲几何体(PolyhedronGeometry)
- 圆环缓冲几何体(RingGeometry)
- 形状缓冲几何体(ShapeGeometry)
- 球缓冲几何体(SphereGeometry)
- 四面缓冲几何体(TetrahedronGeometry)
- 文本缓冲几何体(TextGeometry)
- 圆环缓冲几何体(TorusGeometry)
- 圆环缓冲扭结几何体(TorusKnotGeometry)
- 管道缓冲几何体(TubeGeometry)
- 网格几何体(WireframeGeometry)
- 辅助对象
- 灯光
- 灯光 / 阴影
- 加载器
- 加载器 / 管理器
- 材质
- 基础线条材质(LineBasicMaterial)
- 虚线材质(LineDashedMaterial)
- 材质(Material)
- 基础网格材质(MeshBasicMaterial)
- 深度网格材质(MeshDepthMaterial)
- MeshDistanceMaterial
- Lambert网格材质(MeshLambertMaterial)
- MeshMatcapMaterial
- 法线网格材质(MeshNormalMaterial)
- Phong网格材质(MeshPhongMaterial)
- 物理网格材质(MeshPhysicalMaterial)
- 标准网格材质(MeshStandardMaterial)
- MeshToonMaterial
- 点材质(PointsMaterial)
- 原始着色器材质(RawShaderMaterial)
- 着色器材质(ShaderMaterial)
- 阴影材质(ShadowMaterial)
- 点精灵材质(SpriteMaterial)
- 数学库
- 数学库 / 插值
- 物体
- 渲染器
- 渲染器 / 着色器
- 渲染器 / WebXR
- 场景
- 纹理贴图
示例
- 动画
- 控制
- 几何体
- 辅助对象
- 灯光
- 加载器
- 物体
- 后期处理
- 导出器
- 数学库
- QuickHull
- 渲染器
- 实用工具
开发者参考
- 差异化支持
- WebGL 渲染器
三维向量(Vector3)
该类表示的是一个三维向量(3D vector)。 一个三维向量表示的是一个有顺序的、三个为一组的数字组合(标记为x、y和z), 可被用来表示很多事物,例如:
- 一个位于三维空间中的点。
- 一个在三维空间中的方向与长度的定义。在three.js中,长度总是从(0, 0, 0)到(x, y, z)的 Euclidean distance(欧几里德距离,即直线距离), 方向也是从(0, 0, 0)到(x, y, z)的方向。
- 任意的、有顺序的、三个为一组的数字组合。
其他的一些事物也可以使用二维向量进行表示,比如说动量矢量等等; 但以上这些是它在three.js中的常用用途。
代码示例
const a = new THREE.Vector3( 0, 1, 0 ); //no arguments; will be initialised to (0, 0, 0) const b = new THREE.Vector3( ); const d = a.distanceTo( b );
构造函数
Vector3( x : Float, y : Float, z : Float )
x - 向量的x值,默认为0。
y - 向量的y值,默认为0。
z - 向量的z值,默认为0。
创建一个新的Vector3。
属性
.x : Float
.y : Float
.z : Float
方法
.add ( v : Vector3 ) : this
将传入的向量v和这个向量相加。
.addScalar ( s : Float ) : this
.addScaledVector ( v : Vector3, s : Float ) : this
.addVectors ( a : Vector3, b : Vector3 ) : this
.applyAxisAngle ( axis : Vector3, angle : Float ) : this
axis - 一个被归一化的Vector3。
angle - 以弧度表示的角度。
将轴和角度所指定的旋转应用到该向量上。
.applyEuler ( euler : Euler ) : this
通过将Euler(欧拉)对象转换为Quaternion(四元数)并应用, 将欧拉变换应用到这一向量上。
.applyMatrix3 ( m : Matrix3 ) : this
将该向量乘以三阶矩阵m。
.applyMatrix4 ( m : Matrix4 ) : this
将该向量乘以四阶矩阵m(第四个维度隐式地为1),and divides by perspective.
.applyNormalMatrix ( m : Matrix3 ) : this
Multiplies this vector by normal matrix m and normalizes the result.
.applyQuaternion ( quaternion : Quaternion ) : this
将Quaternion变换应用到该向量。
.angleTo ( v : Vector3 ) : Float
以弧度返回该向量与向量v之间的角度。
.ceil () : this
.clamp ( min : Vector3, max : Vector3 ) : this
min - 在限制范围内,x值、y值和z的最小值。
max - 在限制范围内,x值、y值和z的最大值。
如果该向量的x值、y值或z值大于限制范围内最大x值、y值或z值,则该值将会被所对应的值取代。
如果该向量的x值、y值或z值小于限制范围内最小x值、y值或z值,则该值将会被所对应的值取代。
.clampLength ( min : Float, max : Float ) : this
min - 长度将被限制为的最小值
max - 长度将被限制为的最大值
如果向量长度大于最大值,则它将会被最大值所取代。
如果向量长度小于最小值,则它将会被最小值所取代。
.clampScalar ( min : Float, max : Float ) : this
min - 分量将被限制为的最小值
max - 分量将被限制为的最大值
如果该向量的x值、y值或z值大于最大值,则它们将被最大值所取代。
如果该向量的x值、y值或z值小于最小值,则它们将被最小值所取代。
.clone () : Vector3
返回一个新的Vector3,其具有和当前这个向量相同的x、y和z。
.copy ( v : Vector3 ) : this
将所传入Vector3的x、y和z属性复制给这一Vector3。
.cross ( v : Vector3 ) : this
将该向量设置为它本身与传入的v的叉积(cross product)。
.crossVectors ( a : Vector3, b : Vector3 ) : this
将该向量设置为传入的a与b的叉积(cross product)。
.distanceTo ( v : Vector3 ) : Float
计算该向量到所传入的v间的距离。
.manhattanDistanceTo ( v : Vector3 ) : Float
计算该向量到所传入的v之间的曼哈顿距离(Manhattan distance)。
.distanceToSquared ( v : Vector3 ) : Float
计算该向量到传入的v的平方距离。 如果你只是将该距离和另一个距离进行比较,则应当比较的是距离的平方, 因为它的计算效率会更高一些。
.divide ( v : Vector3 ) : this
将该向量除以向量v。
.divideScalar ( s : Float ) : this
将该向量除以标量s。
如果传入的s = 0,则向量将被设置为( 0, 0, 0 )。
.dot ( v : Vector3 ) : Float
计算该vector和所传入v的点积(dot product)。
.equals ( v : Vector3 ) : Boolean
检查该向量和v的严格相等性。
.floor () : this
向量的分量向下取整为最接近的整数值。
.fromArray ( array : Array, offset : Integer ) : this
array - 来源矩阵。
offset - (可选)在数组中的元素偏移量,默认值为0。
设置向量中的x值为array[ offset + 0 ],y值为array[ offset + 1 ], z值为array[ offset + 2 ]。
.fromBufferAttribute ( attribute : BufferAttribute, index : Integer ) : this
attribute - 来源的attribute。
index - 在attribute中的索引。
从attribute中设置向量的x值、y值和z值。
.getComponent ( index : Integer ) : Float
index - 0, 1 or 2.
如果index值为0返回x值。
如果index值为1返回y值。
如果index值为2返回z值。
.length () : Float
计算从(0, 0, 0) 到 (x, y, z)的欧几里得长度 (Euclidean length,即直线长度)
.manhattanLength () : Float
计算该向量的曼哈顿长度(Manhattan length)。
.lengthSq () : Float
计算从(0, 0, 0)到(x, y, z)的欧几里得长度 (Euclidean length,即直线长度)的平方。 如果你正在比较向量的长度,应当比较的是长度的平方,因为它的计算效率更高一些。
.lerp ( v : Vector3, alpha : Float ) : this
v - 朝着进行插值的Vector3。
alpha - 插值因数,其范围通常在[0, 1]闭区间。
在该向量与传入的向量v之间的线性插值,alpha是沿着线的长度的百分比 —— alpha = 0 时表示的是当前向量,alpha = 1 时表示的是所传入的向量v。
.lerpVectors ( v1 : Vector3, v2 : Vector3, alpha : Float ) : this
v1 - 起始的Vector3。
v2 - 朝着进行插值的Vector3。
alpha - 插值因数,其范围通常在[0, 1]闭区间。
将此向量设置为在v1和v2之间进行线性插值的向量, 其中alpha为两个向量之间连线的长度的百分比 —— alpha = 0 时表示的是v1,alpha = 1 时表示的是v2。
.max ( v : Vector3 ) : this
如果该向量的x值、y值或z值小于所传入v的x值、y值或z值, 则将该值替换为对应的最大值。
.min ( v : Vector3 ) : this
如果该向量的x值、y值或z值大于所传入v的x值、y值或z值, 则将该值替换为对应的最小值。
.multiply ( v : Vector3 ) : this
将该向量与所传入的向量v进行相乘。
.multiplyScalar ( s : Float ) : this
将该向量与所传入的标量s进行相乘。
.multiplyVectors ( a : Vector3, b : Vector3 ) : this
.negate () : this
向量取反,即: x = -x, y = -y , z = -z。
.normalize () : this
将该向量转换为单位向量(unit vector), 也就是说,将该向量的方向设置为和原向量相同,但是其长度(length)为1。
.project ( camera : Camera ) : this
camera — 在投影中使用的摄像机。
Projects this vector from world space into the camera's normalized device coordinate (NDC) space.
.projectOnPlane ( planeNormal : Vector3 ) : this
planeNormal - A vector representing a plane normal.
Projects this vector onto a plane by subtracting this vector projected onto the plane's normal from this vector.
.projectOnVector ( v : Vector3 ) : this
.reflect ( normal : Vector3 ) : this
normal - the normal to the reflecting plane
Reflect this vector off of plane orthogonal to normal. Normal is assumed to have unit length.
.round () : this
向量中的分量四舍五入取整为最接近的整数值。
.roundToZero () : this
向量中的分量朝向0取整数(若分量为负数则向上取整,若为正数则向下取整)。
.set ( x : Float, y : Float, z : Float ) : this
.setComponent ( index : Integer, value : Float ) : null
index - 0、1 或 2。
value - Float
若index为 0 则设置 x 值为 value。
若index为 1 则设置 y 值为 value。
若index为 2 则设置 z 值为 value。
.setFromCylindrical ( c : Cylindrical ) : this
从圆柱坐标c中设置该向量。
.setFromCylindricalCoords ( radius : Float, theta : Float, y : Float ) : this
.setFromMatrixColumn ( matrix : Matrix4, index : Integer ) : this
从传入的四阶矩阵matrix由index指定的列中, 设置该向量的x值、y值和z值。
.setFromMatrix3Column ( matrix : Matrix3, index : Integer ) : this
Sets this vector's x, y and z components from index column of matrix.
.setFromMatrixPosition ( m : Matrix4 ) : this
从变换矩阵(transformation matrix)m中, 设置该向量为其中与位置相关的元素。
.setFromMatrixScale ( m : Matrix4 ) : this
从变换矩阵(transformation matrix)m中, 设置该向量为其中与缩放相关的元素。
.setFromSpherical ( s : Spherical ) : this
从球坐标s中设置该向量。
.setFromSphericalCoords ( radius : Float, phi : Float, theta : Float ) : this
.setLength ( l : Float ) : this
将该向量的方向设置为和原向量相同,但是长度(length)为l。
.setScalar ( scalar : Float ) : this
.setX ( x : Float ) : this
.setY ( y : Float ) : this
.setZ ( z : Float ) : this
.sub ( v : Vector3 ) : this
从该向量减去向量v。
.subScalar ( s : Float ) : this
.subVectors ( a : Vector3, b : Vector3 ) : this
.toArray ( array : Array, offset : Integer ) : Array
array - (可选)被用于存储向量的数组。如果这个值没有传入,则将创建一个新的数组。
offset - (可选) 数组中元素的偏移量。
返回一个数组[x, y ,z],或者将x、y和z复制到所传入的array中。
.transformDirection ( m : Matrix4 ) : this
通过传入的矩阵(m的左上角3 x 3子矩阵)变换向量的方向, 并将结果进行normalizes(归一化)。
.unproject ( camera : Camera ) : this
camera — 在投影中使用的摄像机。
Projects this vector from the camera's normalized device coordinate (NDC) space into world space.
.random () : this
Sets each component of this vector to a pseudo-random value between 0 and 1, excluding 1.
源代码
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论