- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
Sampling with and without replacement
# Sampling is done with replacement by default np.random.choice(4, 12)
array([2, 1, 2, 2, 0, 2, 2, 1, 3, 2, 3, 1])
# Probability weights can be given np.random.choice(4, 12, p=[.4, .1, .1, .4])
array([3, 3, 1, 0, 0, 3, 1, 0, 0, 3, 0, 0])
x = np.random.randint(0, 10, (8, 12)) x
array([[7, 2, 4, 8, 0, 7, 9, 3, 4, 6, 1, 5], [6, 2, 1, 8, 3, 5, 0, 2, 6, 2, 4, 4], [6, 3, 0, 6, 4, 7, 6, 7, 1, 5, 7, 9], [2, 4, 8, 1, 2, 1, 1, 3, 5, 9, 0, 8], [1, 6, 3, 3, 5, 9, 7, 9, 2, 3, 3, 3], [8, 6, 9, 7, 6, 3, 9, 6, 6, 6, 1, 3], [4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3], [1, 3, 4, 7, 6, 1, 4, 3, 3, 7, 6, 8]])
# sampling individual elements np.random.choice(x.ravel(), 12)
array([1, 2, 4, 7, 1, 2, 2, 6, 7, 3, 8, 4])
# sampling rows idx = np.random.choice(x.shape[0], 4) x[idx, :]
array([[4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3], [4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3], [6, 2, 1, 8, 3, 5, 0, 2, 6, 2, 4, 4], [4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3]])
# sampling columns idx = np.random.choice(x.shape[1], 4) x[:, idx]
array([[9, 4, 3, 1], [0, 6, 2, 4], [6, 1, 7, 7], [1, 5, 3, 0], [7, 2, 9, 3], [9, 6, 6, 1], [6, 9, 8, 0], [4, 3, 3, 6]])
# Give the argument replace=False try: np.random.choice(4, 12, replace=False) except ValueError, e: print e
Cannot take a larger sample than population when 'replace=False'
You will likely have used this for the stochastic gradient descent homework.
x
array([[7, 2, 4, 8, 0, 7, 9, 3, 4, 6, 1, 5], [6, 2, 1, 8, 3, 5, 0, 2, 6, 2, 4, 4], [6, 3, 0, 6, 4, 7, 6, 7, 1, 5, 7, 9], [2, 4, 8, 1, 2, 1, 1, 3, 5, 9, 0, 8], [1, 6, 3, 3, 5, 9, 7, 9, 2, 3, 3, 3], [8, 6, 9, 7, 6, 3, 9, 6, 6, 6, 1, 3], [4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3], [1, 3, 4, 7, 6, 1, 4, 3, 3, 7, 6, 8]])
# Shuffling occurs "in place" for efficiency np.random.shuffle(x) x
array([[7, 2, 4, 8, 0, 7, 9, 3, 4, 6, 1, 5], [4, 3, 1, 0, 5, 8, 6, 8, 9, 1, 0, 3], [8, 6, 9, 7, 6, 3, 9, 6, 6, 6, 1, 3], [2, 4, 8, 1, 2, 1, 1, 3, 5, 9, 0, 8], [6, 3, 0, 6, 4, 7, 6, 7, 1, 5, 7, 9], [6, 2, 1, 8, 3, 5, 0, 2, 6, 2, 4, 4], [1, 3, 4, 7, 6, 1, 4, 3, 3, 7, 6, 8], [1, 6, 3, 3, 5, 9, 7, 9, 2, 3, 3, 3]])
# To shuffle columns instead, transpose before shuffling np.random.shuffle(x.T) x
array([[7, 0, 4, 7, 9, 8, 1, 6, 4, 3, 2, 5], [8, 5, 1, 4, 6, 0, 0, 1, 9, 8, 3, 3], [3, 6, 9, 8, 9, 7, 1, 6, 6, 6, 6, 3], [1, 2, 8, 2, 1, 1, 0, 9, 5, 3, 4, 8], [7, 4, 0, 6, 6, 6, 7, 5, 1, 7, 3, 9], [5, 3, 1, 6, 0, 8, 4, 2, 6, 2, 2, 4], [1, 6, 4, 1, 4, 7, 6, 7, 3, 3, 3, 8], [9, 5, 3, 1, 7, 3, 3, 3, 2, 9, 6, 3]])
# numpy.random.permutation does the same thing but returns a copy np.random.permutation(x)
array([[7, 0, 4, 7, 9, 8, 1, 6, 4, 3, 2, 5], [1, 6, 4, 1, 4, 7, 6, 7, 3, 3, 3, 8], [1, 2, 8, 2, 1, 1, 0, 9, 5, 3, 4, 8], [7, 4, 0, 6, 6, 6, 7, 5, 1, 7, 3, 9], [9, 5, 3, 1, 7, 3, 3, 3, 2, 9, 6, 3], [3, 6, 9, 8, 9, 7, 1, 6, 6, 6, 6, 3], [8, 5, 1, 4, 6, 0, 0, 1, 9, 8, 3, 3], [5, 3, 1, 6, 0, 8, 4, 2, 6, 2, 2, 4]])
# When given an integre n, permutation treats is as the array arange(n) np.random.permutation(10)
array([4, 0, 6, 7, 5, 1, 8, 2, 3, 9])
# Use indices if you needed to shuffle collections of arrays in synchrony x = np.arange(12).reshape(4,3) y = x + 10 idx = np.random.permutation(x.shape[0]) print x[idx, :], '\n' print y[idx, :]
[[ 9 10 11] [ 3 4 5] [ 6 7 8] [ 0 1 2]] [[19 20 21] [13 14 15] [16 17 18] [10 11 12]]
Bootstrap
The bootstrap is commonly used to estimate statistics when theory fails. We have already seen the bootstrap for estiamting confidence bounds for convergence in the Monte Carlo integration.
# For example, what is the 95% confidence interval for # the mean of this data set if you didn't know how it was generated? x = np.concatenate([np.random.exponential(size=200), np.random.normal(size=100)]) plt.hist(x, 25, histtype='step');
n = len(x) reps = 10000 xb = np.random.choice(x, (n, reps)) mb = xb.mean(axis=0) mb.sort() np.percentile(mb, [2.5, 97.5])
array([0.483, 0.740])
Reprise of bootstrap example for Monte Carlo integration
def f(x): return x * np.cos(71*x) + np.sin(13*x)
# data sample for integration n = 100 x = f(np.random.random(n))
# bootstrap MC integration reps = 1000 xb = np.random.choice(x, (n, reps), replace=True) yb = 1/np.arange(1, n+1)[:, None] * np.cumsum(xb, axis=0) upper, lower = np.percentile(yb, [2.5, 97.5], axis=1)
plt.plot(np.arange(1, n+1)[:, None], yb, c='grey', alpha=0.02) plt.plot(np.arange(1, n+1), yb[:, 0], c='red', linewidth=1) plt.plot(np.arange(1, n+1), upper, 'b', np.arange(1, n+1), lower, 'b');
Leave some-out resampling
Jackknife estimate of parameters
This shows the leave-one-out calculation idiom for Python. Unlike R, a -k index to an array does not delete the kth entry, but returns the kth entry from the end, so we need another way to efficiently drop one scalar or vector. This can be done using Boolean indexing as shown in the examples below, and is efficient since the operations are on views of the origianl array rather thna copies.
def jackknife(x, func): """Jackknife estimate of the estimator func""" n = len(x) idx = np.arange(n) return np.sum(func(x[idx!=i]) for i in range(n))/float(n)
# Jackknife estimate of standard deviation x = np.random.normal(0, 2, 100) jackknife(x, np.std)
1.9223
def jackknife_var(x, func): """Jackknife estiamte of the variance of the estimator func.""" n = len(x) idx = np.arange(n) j_est = jackknife(x, func) return (n-1)/(n + 0.0) * np.sum((func(x[idx!=i]) - j_est)**2.0 for i in range(n))
# estimate of the variance of an estimator jackknife_var(x, np.std)
0.0254
Leave one out cross validation (LOOCV)
LOOCV also uses the same idiom, and a simple example of LOOCV for model selection is illustrated.
a, b, c = 1, 2, 3 x = np.linspace(0, 5, 10) y = a*x**2 + b*x + c + np.random.normal(0, 1, len(x))
plt.figure(figsize=(12,4)) for deg in range(1, 5): plt.subplot(1, 4, deg) beta = np.polyfit(x, y, deg) plt.plot(x, y, 'r:o') plt.plot(x, np.polyval(beta, x), 'b-') plt.title('Degree = %d' % deg)
def loocv(x, y, fit, pred, deg): """LOOCV RSS for fitting a polynomial model.""" n = len(x) idx = np.arange(n) rss = np.sum([(y - pred(fit(x[idx!=i], y[idx!=i], deg), x))**2.0 for i in range(n)]) return rss
# RSS does not detect overfitting and selects the most complex model for deg in range(1, 5): print 'Degree = %d, RSS=%.2f' % (deg, np.sum((y - np.polyval(np.polyfit(x, y, deg), x))**2.0))
Degree = 1, RSS=59.90 Degree = 2, RSS=6.20 Degree = 3, RSS=6.20 Degree = 4, RSS=6.20
# LOOCV selects the correct model for deg in range(1, 5): print 'Degree = %d, RSS=%.2f' % (deg, loocv(x, y, np.polyfit, np.polyval, deg))
Degree = 1, RSS=628.41 Degree = 2, RSS=64.35 Degree = 3, RSS=67.81 Degree = 4, RSS=85.39
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论