返回介绍

solution / 0000-0099 / 0044.Wildcard Matching / README

发布于 2024-06-17 01:04:40 字数 5456 浏览 0 评论 0 收藏 0

44. 通配符匹配

English Version

题目描述

给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 '?''*' 匹配规则的通配符匹配:
  • '?' 可以匹配任何单个字符。
  • '*' 可以匹配任意字符序列(包括空字符序列)。

判定匹配成功的充要条件是:字符模式必须能够 完全匹配 输入字符串(而不是部分匹配)。

 

示例 1:

输入:s = "aa", p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:s = "aa", p = "*"
输出:true
解释:'*' 可以匹配任意字符串。

示例 3:

输入:s = "cb", p = "?a"
输出:false
解释:'?' 可以匹配 'c', 但第二个 'a' 无法匹配 'b'。

 

提示:

  • 0 <= s.length, p.length <= 2000
  • s 仅由小写英文字母组成
  • p 仅由小写英文字母、'?''*' 组成

解法

方法一:动态规划

我们定义状态 $dp[i][j]$ 表示 $s$ 的前 $i$ 个字符和 $p$ 的前 $j$ 个字符是否匹配。

状态转移方程如下:

$$ dp[i][j]= \begin{cases} dp[i-1][j-1] & \text{if } s[i-1]=p[j-1] \text{ or } p[j-1]=\text{?} \ dp[i-1][j-1] \lor dp[i-1][j] \lor dp[i][j-1] & \text{if } p[j-1]=\text{*} \ \text{false} & \text{otherwise} \end{cases} $$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为 $s$ 和 $p$ 的长度。

class Solution:
  def isMatch(self, s: str, p: str) -> bool:
    m, n = len(s), len(p)
    dp = [[False] * (n + 1) for _ in range(m + 1)]
    dp[0][0] = True
    for j in range(1, n + 1):
      if p[j - 1] == '*':
        dp[0][j] = dp[0][j - 1]
    for i in range(1, m + 1):
      for j in range(1, n + 1):
        if s[i - 1] == p[j - 1] or p[j - 1] == '?':
          dp[i][j] = dp[i - 1][j - 1]
        elif p[j - 1] == '*':
          dp[i][j] = dp[i - 1][j] or dp[i][j - 1]
    return dp[m][n]
class Solution {
  public boolean isMatch(String s, String p) {
    int m = s.length(), n = p.length();
    boolean[][] dp = new boolean[m + 1][n + 1];
    dp[0][0] = true;
    for (int j = 1; j <= n; ++j) {
      if (p.charAt(j - 1) == '*') {
        dp[0][j] = dp[0][j - 1];
      }
    }
    for (int i = 1; i <= m; ++i) {
      for (int j = 1; j <= n; ++j) {
        if (s.charAt(i - 1) == p.charAt(j - 1) || p.charAt(j - 1) == '?') {
          dp[i][j] = dp[i - 1][j - 1];
        } else if (p.charAt(j - 1) == '*') {
          dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
        }
      }
    }
    return dp[m][n];
  }
}
class Solution {
public:
  bool isMatch(string s, string p) {
    int m = s.size(), n = p.size();
    vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
    dp[0][0] = true;
    for (int j = 1; j <= n; ++j) {
      if (p[j - 1] == '*') {
        dp[0][j] = dp[0][j - 1];
      }
    }
    for (int i = 1; i <= m; ++i) {
      for (int j = 1; j <= n; ++j) {
        if (s[i - 1] == p[j - 1] || p[j - 1] == '?') {
          dp[i][j] = dp[i - 1][j - 1];
        } else if (p[j - 1] == '*') {
          dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
        }
      }
    }
    return dp[m][n];
  }
};
func isMatch(s string, p string) bool {
  m, n := len(s), len(p)
  dp := make([][]bool, m+1)
  for i := range dp {
    dp[i] = make([]bool, n+1)
  }
  dp[0][0] = true
  for j := 1; j <= n; j++ {
    if p[j-1] == '*' {
      dp[0][j] = dp[0][j-1]
    }
  }
  for i := 1; i <= m; i++ {
    for j := 1; j <= n; j++ {
      if s[i-1] == p[j-1] || p[j-1] == '?' {
        dp[i][j] = dp[i-1][j-1]
      } else if p[j-1] == '*' {
        dp[i][j] = dp[i-1][j] || dp[i][j-1]
      }
    }
  }
  return dp[m][n]
}
using System.Linq;

public class Solution {
  public bool IsMatch(string s, string p) {
    if (p.Count(ch => ch != '*') > s.Length)
    {
      return false;
    }

    bool[,] f = new bool[s.Length + 1, p.Length + 1];
    bool[] d = new bool[s.Length + 1]; // d[i] means f[0, j] || f[1, j] || ... || f[i, j]
    for (var j = 0; j <= p.Length; ++j)
    {
      d[0] = j == 0 ? true : d[0] && p[j - 1] == '*';
      for (var i = 0; i <= s.Length; ++i)
      {
        if (j == 0)
        {
          f[i, j] = i == 0;
          continue;
        }

        if (p[j - 1] == '*')
        {
          if (i > 0)
          {
            d[i] = f[i, j - 1] || d[i - 1];
          }
          f[i, j] = d[i];
        }
        else if (p[j - 1] == '?')
        {
          f[i, j] = i > 0 && f[i - 1, j - 1];
        }
        else
        {
          f[i, j] = i > 0 && f[i - 1, j - 1] && s[i - 1] == p[j - 1];
        }
      }
    }
    return f[s.Length, p.Length];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文