- 利用 Python 进行数据分析
- 第 1 章 准备工作
- 第 2 章 Python 语法基础,IPython 和 Jupyter 笔记本
- 第 3 章 Python 的数据结构、函数和文件
- 第 4 章 NumPy 基础:数组和向量计算
- 第 5 章 pandas 入门
- 第 6 章 数据加载、存储与文件格式
- 第 7 章 数据清洗和准备
- 第 8 章 数据规整:聚合、合并和重塑
- 第 9 章 绘图和可视化
- 第 10 章 数据聚合与分组运算
- 第 11 章 时间序列
- 第 12 章 pandas 高级应用
- 第 13 章 Python 建模库介绍
- 第 14 章 数据分析案例
- 附录 A NumPy 高级应用
- 附录 B 更多关于 IPython 的内容
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
利用 Python 进行数据分析
下载本书代码(本书 GitHub 地址) (建议把代码下载下来之后,安装好 Anaconda 3.6,在目录文件夹中用 Jupyter 笔记本打开)
本书是 2017 年 10 月 20 号正式出版的,和第 1 版的不同之处有:
- 包括 Python 教程内的所有代码升级为 Python 3.6(第 1 版使用的是 Python 2.7)
- 更新了 Anaconda 和其它包的 Python 安装方法
- 更新了 Pandas 为 2017 最新版
- 新增了一章,关于更高级的 Pandas 工具,外加一些 tips
- 简要介绍了使用 StatsModels 和 scikit-learn
对有些内容进行了重新排版。(译者注 1:最大的改变是把第 1 版附录中的 Python 教程,单列成了现在的第 2 章和第 3 章,并且进行了扩充。可以说,本书第 2 版对新手更为友好了!)
(译者注 2:毫无疑问,本书是学习 Python 数据分析最好的参考书。本来想把书名直接译为《Python 数据分析》,这样更简短。但是为了尊重第 1 版的翻译,考虑到继承性,还是用老书名。这样读过第一版的老读者可以方便的用之前的书名检索到第二版。作者在写第二版的时候,有些文字是照搬第一版的。所以第二版的翻译也借鉴 copy 了第一版翻译:即,如果第二版中有和第一版相同的文字,则 copy 第一版的中文译本,觉得不妥的地方会稍加修改,剩下的不同的内容就自己翻译。这样做也是为读过第一版的老读者考虑——相同的内容可以直接跳过。)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论