返回介绍

lcci / 08.04.Power Set / README

发布于 2024-06-17 01:04:43 字数 6673 浏览 0 评论 0 收藏 0

面试题 08.04. 幂集

English Version

题目描述

幂集。编写一种方法,返回某集合的所有子集。集合中不包含重复的元素

说明:解集不能包含重复的子集。

示例:

 输入: nums = [1,2,3]
 输出:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

解法

方法一:递归枚举

我们设计一个递归函数 $dfs(u, t)$,它的参数为当前枚举到的元素的下标 $u$,以及当前的子集 $t$。

当前枚举到的元素下标为 $u$,我们可以选择将其加入子集 $t$ 中,也可以选择不加入子集 $t$ 中。递归这两种选择,即可得到所有的子集。

时间复杂度 $O(n \times 2^n)$,空间复杂度 $O(n)$。其中 $n$ 为数组的长度。数组中每个元素有两种状态,即选择或不选择,共 $2^n$ 种状态,每种状态需要 $O(n)$ 的时间来构造子集。

class Solution:
  def subsets(self, nums: List[int]) -> List[List[int]]:
    def dfs(u, t):
      if u == len(nums):
        ans.append(t[:])
        return
      dfs(u + 1, t)
      t.append(nums[u])
      dfs(u + 1, t)
      t.pop()

    ans = []
    dfs(0, [])
    return ans
class Solution {
  private List<List<Integer>> ans = new ArrayList<>();
  private int[] nums;

  public List<List<Integer>> subsets(int[] nums) {
    this.nums = nums;
    dfs(0, new ArrayList<>());
    return ans;
  }

  private void dfs(int u, List<Integer> t) {
    if (u == nums.length) {
      ans.add(new ArrayList<>(t));
      return;
    }
    dfs(u + 1, t);
    t.add(nums[u]);
    dfs(u + 1, t);
    t.remove(t.size() - 1);
  }
}
class Solution {
public:
  vector<vector<int>> subsets(vector<int>& nums) {
    vector<vector<int>> ans;
    vector<int> t;
    dfs(0, nums, t, ans);
    return ans;
  }

  void dfs(int u, vector<int>& nums, vector<int>& t, vector<vector<int>>& ans) {
    if (u == nums.size()) {
      ans.push_back(t);
      return;
    }
    dfs(u + 1, nums, t, ans);
    t.push_back(nums[u]);
    dfs(u + 1, nums, t, ans);
    t.pop_back();
  }
};
func subsets(nums []int) [][]int {
  var ans [][]int
  var dfs func(u int, t []int)
  dfs = func(u int, t []int) {
    if u == len(nums) {
      ans = append(ans, append([]int(nil), t...))
      return
    }
    dfs(u+1, t)
    t = append(t, nums[u])
    dfs(u+1, t)
    t = t[:len(t)-1]
  }
  var t []int
  dfs(0, t)
  return ans
}
function subsets(nums: number[]): number[][] {
  const res = [[]];
  nums.forEach(num => {
    res.forEach(item => {
      res.push(item.concat(num));
    });
  });
  return res;
}
impl Solution {
  pub fn subsets(nums: Vec<i32>) -> Vec<Vec<i32>> {
    let n = nums.len();
    let mut res: Vec<Vec<i32>> = vec![vec![]];
    for i in 0..n {
      for j in 0..res.len() {
        res.push(vec![..res[j].clone(), vec![nums[i]]].concat());
      }
    }
    res
  }
}
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var subsets = function (nums) {
  let prev = [];
  let res = [];
  dfs(nums, 0, prev, res);
  return res;
};

function dfs(nums, depth, prev, res) {
  res.push(prev.slice());
  for (let i = depth; i < nums.length; i++) {
    prev.push(nums[i]);
    depth++;
    dfs(nums, depth, prev, res);
    prev.pop();
  }
}

方法二:二进制枚举

我们可以将方法一中的递归过程改写成迭代的形式,即使用二进制枚举的方法来枚举所有的子集。

我们可以使用 $2^n$ 个二进制数来表示 $n$ 个元素的所有子集,若某个二进制数 mask 的第 $i$ 位为 $1$,表示子集中包含数组第 $i$ 个元素 $v$;若为 $0$,表示子集中不包含数组第 $i$ 个元素 $v$。

时间复杂度 $O(n \times 2^n)$,空间复杂度 $O(n)$。其中 $n$ 为数组的长度。一共有 $2^n$ 个子集,每个子集需要 $O(n)$ 的时间来构造。

class Solution:
  def subsets(self, nums: List[int]) -> List[List[int]]:
    ans = []
    for mask in range(1 << len(nums)):
      t = []
      for i, v in enumerate(nums):
        if (mask >> i) & 1:
          t.append(v)
      ans.append(t)
    return ans
class Solution {
  public List<List<Integer>> subsets(int[] nums) {
    int n = nums.length;
    List<List<Integer>> ans = new ArrayList<>();
    for (int mask = 0; mask < 1 << n; ++mask) {
      List<Integer> t = new ArrayList<>();
      for (int i = 0; i < n; ++i) {
        if (((mask >> i) & 1) == 1) {
          t.add(nums[i]);
        }
      }
      ans.add(t);
    }
    return ans;
  }
}
class Solution {
public:
  vector<vector<int>> subsets(vector<int>& nums) {
    vector<vector<int>> ans;
    vector<int> t;
    int n = nums.size();
    for (int mask = 0; mask < 1 << n; ++mask) {
      t.clear();
      for (int i = 0; i < n; ++i) {
        if ((mask >> i) & 1) {
          t.push_back(nums[i]);
        }
      }
      ans.push_back(t);
    }
    return ans;
  }
};
func subsets(nums []int) [][]int {
  var ans [][]int
  n := len(nums)
  for mask := 0; mask < 1<<n; mask++ {
    t := []int{}
    for i, v := range nums {
      if ((mask >> i) & 1) == 1 {
        t = append(t, v)
      }
    }
    ans = append(ans, t)
  }
  return ans
}
function subsets(nums: number[]): number[][] {
  const n = nums.length;
  const res = [];
  const list = [];
  const dfs = (i: number) => {
    if (i === n) {
      res.push([...list]);
      return;
    }
    list.push(nums[i]);
    dfs(i + 1);
    list.pop();
    dfs(i + 1);
  };
  dfs(0);
  return res;
}
impl Solution {
  fn dfs(nums: &Vec<i32>, i: usize, res: &mut Vec<Vec<i32>>, list: &mut Vec<i32>) {
    if i == nums.len() {
      res.push(list.clone());
      return;
    }
    list.push(nums[i]);
    Self::dfs(nums, i + 1, res, list);
    list.pop();
    Self::dfs(nums, i + 1, res, list);
  }

  pub fn subsets(nums: Vec<i32>) -> Vec<Vec<i32>> {
    let mut res = vec![];
    Self::dfs(&nums, 0, &mut res, &mut vec![]);
    res
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文