返回介绍

solution / 1900-1999 / 1937.Maximum Number of Points with Cost / README_EN

发布于 2024-06-17 01:03:12 字数 6043 浏览 0 评论 0 收藏 0

1937. Maximum Number of Points with Cost

中文文档

Description

You are given an m x n integer matrix points (0-indexed). Starting with 0 points, you want to maximize the number of points you can get from the matrix.

To gain points, you must pick one cell in each row. Picking the cell at coordinates (r, c) will add points[r][c] to your score.

However, you will lose points if you pick a cell too far from the cell that you picked in the previous row. For every two adjacent rows r and r + 1 (where 0 <= r < m - 1), picking cells at coordinates (r, c1) and (r + 1, c2) will subtract abs(c1 - c2) from your score.

Return _the maximum number of points you can achieve_.

abs(x) is defined as:

  • x for x >= 0.
  • -x for x < 0.

 

Example 1:

Input: points = [[1,2,3],[1,5,1],[3,1,1]]
Output: 9
Explanation:
The blue cells denote the optimal cells to pick, which have coordinates (0, 2), (1, 1), and (2, 0).
You add 3 + 5 + 3 = 11 to your score.
However, you must subtract abs(2 - 1) + abs(1 - 0) = 2 from your score.
Your final score is 11 - 2 = 9.

Example 2:

Input: points = [[1,5],[2,3],[4,2]]
Output: 11
Explanation:
The blue cells denote the optimal cells to pick, which have coordinates (0, 1), (1, 1), and (2, 0).
You add 5 + 3 + 4 = 12 to your score.
However, you must subtract abs(1 - 1) + abs(1 - 0) = 1 from your score.
Your final score is 12 - 1 = 11.

 

Constraints:

  • m == points.length
  • n == points[r].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 105
  • 0 <= points[r][c] <= 105

Solutions

Solution 1

class Solution:
  def maxPoints(self, points: List[List[int]]) -> int:
    n = len(points[0])
    f = points[0][:]
    for p in points[1:]:
      g = [0] * n
      lmx = -inf
      for j in range(n):
        lmx = max(lmx, f[j] + j)
        g[j] = max(g[j], p[j] + lmx - j)
      rmx = -inf
      for j in range(n - 1, -1, -1):
        rmx = max(rmx, f[j] - j)
        g[j] = max(g[j], p[j] + rmx + j)
      f = g
    return max(f)
class Solution {
  public long maxPoints(int[][] points) {
    int n = points[0].length;
    long[] f = new long[n];
    final long inf = 1L << 60;
    for (int[] p : points) {
      long[] g = new long[n];
      long lmx = -inf, rmx = -inf;
      for (int j = 0; j < n; ++j) {
        lmx = Math.max(lmx, f[j] + j);
        g[j] = Math.max(g[j], p[j] + lmx - j);
      }
      for (int j = n - 1; j >= 0; --j) {
        rmx = Math.max(rmx, f[j] - j);
        g[j] = Math.max(g[j], p[j] + rmx + j);
      }
      f = g;
    }
    long ans = 0;
    for (long x : f) {
      ans = Math.max(ans, x);
    }
    return ans;
  }
}
class Solution {
public:
  long long maxPoints(vector<vector<int>>& points) {
    using ll = long long;
    int n = points[0].size();
    vector<ll> f(n);
    const ll inf = 1e18;
    for (auto& p : points) {
      vector<ll> g(n);
      ll lmx = -inf, rmx = -inf;
      for (int j = 0; j < n; ++j) {
        lmx = max(lmx, f[j] + j);
        g[j] = max(g[j], p[j] + lmx - j);
      }
      for (int j = n - 1; ~j; --j) {
        rmx = max(rmx, f[j] - j);
        g[j] = max(g[j], p[j] + rmx + j);
      }
      f = move(g);
    }
    return *max_element(f.begin(), f.end());
  }
};
func maxPoints(points [][]int) int64 {
  n := len(points[0])
  const inf int64 = 1e18
  f := make([]int64, n)
  for _, p := range points {
    g := make([]int64, n)
    lmx, rmx := -inf, -inf
    for j := range p {
      lmx = max(lmx, f[j]+int64(j))
      g[j] = max(g[j], int64(p[j])+lmx-int64(j))
    }
    for j := n - 1; j >= 0; j-- {
      rmx = max(rmx, f[j]-int64(j))
      g[j] = max(g[j], int64(p[j])+rmx+int64(j))
    }
    f = g
  }
  return slices.Max(f)
}
function maxPoints(points: number[][]): number {
  const n = points[0].length;
  const f: number[] = new Array(n).fill(0);
  for (const p of points) {
    const g: number[] = new Array(n).fill(0);
    let lmx = -Infinity;
    let rmx = -Infinity;
    for (let j = 0; j < n; ++j) {
      lmx = Math.max(lmx, f[j] + j);
      g[j] = Math.max(g[j], p[j] + lmx - j);
    }
    for (let j = n - 1; ~j; --j) {
      rmx = Math.max(rmx, f[j] - j);
      g[j] = Math.max(g[j], p[j] + rmx + j);
    }
    f.splice(0, n, ...g);
  }
  return Math.max(...f);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文