返回介绍

solution / 1800-1899 / 1803.Count Pairs With XOR in a Range / README_EN

发布于 2024-06-17 01:03:14 字数 9399 浏览 0 评论 0 收藏 0

1803. Count Pairs With XOR in a Range

中文文档

Description

Given a (0-indexed) integer array nums and two integers low and high, return _the number of nice pairs_.

A nice pair is a pair (i, j) where 0 <= i < j < nums.length and low <= (nums[i] XOR nums[j]) <= high.

 

Example 1:


Input: nums = [1,4,2,7], low = 2, high = 6

Output: 6

Explanation: All nice pairs (i, j) are as follows:

  - (0, 1): nums[0] XOR nums[1] = 5 

  - (0, 2): nums[0] XOR nums[2] = 3

  - (0, 3): nums[0] XOR nums[3] = 6

  - (1, 2): nums[1] XOR nums[2] = 6

  - (1, 3): nums[1] XOR nums[3] = 3

  - (2, 3): nums[2] XOR nums[3] = 5

Example 2:


Input: nums = [9,8,4,2,1], low = 5, high = 14

Output: 8

Explanation: All nice pairs (i, j) are as follows:

​​​​​  - (0, 2): nums[0] XOR nums[2] = 13

    - (0, 3): nums[0] XOR nums[3] = 11

    - (0, 4): nums[0] XOR nums[4] = 8

    - (1, 2): nums[1] XOR nums[2] = 12

    - (1, 3): nums[1] XOR nums[3] = 10

    - (1, 4): nums[1] XOR nums[4] = 9

    - (2, 3): nums[2] XOR nums[3] = 6

    - (2, 4): nums[2] XOR nums[4] = 5

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 2 * 104
  • 1 <= low <= high <= 2 * 104

Solutions

Solution 1: 0-1 Trie

For this kind of problem that counts the interval $[low, high]$, we can consider converting it into counting $[0, high]$ and $[0, low - 1]$, and then subtracting the latter from the former to get the answer.

In this problem, we can count how many pairs of numbers have an XOR value less than $high+1$, and then count how many pairs of numbers have an XOR value less than $low$. The difference between these two counts is the number of pairs whose XOR value is in the interval $[low, high]$.

Moreover, for array XOR counting problems, we can usually use a "0-1 Trie" to solve them.

The definition of the Trie node is as follows:

  • children[0] and children[1] represent the left and right child nodes of the current node, respectively;
  • cnt represents the number of numbers ending with the current node.

In the Trie, we also define the following two functions:

One function is $insert(x)$, which inserts the number $x$ into the Trie. This function inserts the number $x$ into the "0-1 Trie" in the order of binary bits from high to low. If the current binary bit is $0$, it is inserted into the left child node, otherwise, it is inserted into the right child node. Then the count value $cnt$ of the node is increased by $1$.

Another function is $search(x, limit)$, which searches for the count of numbers in the Trie that have an XOR value with $x$ less than $limit$. This function starts from the root node node of the Trie, traverses the binary bits of $x$ from high to low, and denotes the current binary bit of $x$ as $v$. If the current binary bit of $limit$ is $1$, we can directly add the count value $cnt$ of the child node that has the same binary bit $v$ as $x$ to the answer, and then move the current node to the child node that has a different binary bit $v$ from $x$, i.e., node = node.children[v ^ 1]. Continue to traverse the next bit. If the current binary bit of $limit$ is $0$, we can only move the current node to the child node that has the same binary bit $v$ as $x$, i.e., node = node.children[v]. Continue to traverse the next bit. After traversing the binary bits of $x$, return the answer.

With the above two functions, we can solve this problem.

We traverse the array nums. For each number $x$, we first search in the Trie for the count of numbers that have an XOR value with $x$ less than $high+1$, and then search in the Trie for the count of pairs that have an XOR value with $x$ less than $low$, and add the difference between the two counts to the answer. Then insert $x$ into the Trie. Continue to traverse the next number $x$ until the array nums is traversed. Finally, return the answer.

The time complexity is $O(n \times \log M)$, and the space complexity is $O(n \times \log M)$. Here, $n$ is the length of the array nums, and $M$ is the maximum value in the array nums. In this problem, we directly take $\log M = 16$.

class Trie:
  def __init__(self):
    self.children = [None] * 2
    self.cnt = 0

  def insert(self, x):
    node = self
    for i in range(15, -1, -1):
      v = x >> i & 1
      if node.children[v] is None:
        node.children[v] = Trie()
      node = node.children[v]
      node.cnt += 1

  def search(self, x, limit):
    node = self
    ans = 0
    for i in range(15, -1, -1):
      if node is None:
        return ans
      v = x >> i & 1
      if limit >> i & 1:
        if node.children[v]:
          ans += node.children[v].cnt
        node = node.children[v ^ 1]
      else:
        node = node.children[v]
    return ans


class Solution:
  def countPairs(self, nums: List[int], low: int, high: int) -> int:
    ans = 0
    tree = Trie()
    for x in nums:
      ans += tree.search(x, high + 1) - tree.search(x, low)
      tree.insert(x)
    return ans
class Trie {
  private Trie[] children = new Trie[2];
  private int cnt;

  public void insert(int x) {
    Trie node = this;
    for (int i = 15; i >= 0; --i) {
      int v = (x >> i) & 1;
      if (node.children[v] == null) {
        node.children[v] = new Trie();
      }
      node = node.children[v];
      ++node.cnt;
    }
  }

  public int search(int x, int limit) {
    Trie node = this;
    int ans = 0;
    for (int i = 15; i >= 0 && node != null; --i) {
      int v = (x >> i) & 1;
      if (((limit >> i) & 1) == 1) {
        if (node.children[v] != null) {
          ans += node.children[v].cnt;
        }
        node = node.children[v ^ 1];
      } else {
        node = node.children[v];
      }
    }
    return ans;
  }
}

class Solution {
  public int countPairs(int[] nums, int low, int high) {
    Trie trie = new Trie();
    int ans = 0;
    for (int x : nums) {
      ans += trie.search(x, high + 1) - trie.search(x, low);
      trie.insert(x);
    }
    return ans;
  }
}
class Trie {
public:
  Trie()
    : children(2)
    , cnt(0) {}

  void insert(int x) {
    Trie* node = this;
    for (int i = 15; ~i; --i) {
      int v = x >> i & 1;
      if (!node->children[v]) {
        node->children[v] = new Trie();
      }
      node = node->children[v];
      ++node->cnt;
    }
  }

  int search(int x, int limit) {
    Trie* node = this;
    int ans = 0;
    for (int i = 15; ~i && node; --i) {
      int v = x >> i & 1;
      if (limit >> i & 1) {
        if (node->children[v]) {
          ans += node->children[v]->cnt;
        }
        node = node->children[v ^ 1];
      } else {
        node = node->children[v];
      }
    }
    return ans;
  }

private:
  vector<Trie*> children;
  int cnt;
};

class Solution {
public:
  int countPairs(vector<int>& nums, int low, int high) {
    Trie* tree = new Trie();
    int ans = 0;
    for (int& x : nums) {
      ans += tree->search(x, high + 1) - tree->search(x, low);
      tree->insert(x);
    }
    return ans;
  }
};
type Trie struct {
  children [2]*Trie
  cnt    int
}

func newTrie() *Trie {
  return &Trie{}
}

func (this *Trie) insert(x int) {
  node := this
  for i := 15; i >= 0; i-- {
    v := (x >> i) & 1
    if node.children[v] == nil {
      node.children[v] = newTrie()
    }
    node = node.children[v]
    node.cnt++
  }
}

func (this *Trie) search(x, limit int) (ans int) {
  node := this
  for i := 15; i >= 0 && node != nil; i-- {
    v := (x >> i) & 1
    if (limit >> i & 1) == 1 {
      if node.children[v] != nil {
        ans += node.children[v].cnt
      }
      node = node.children[v^1]
    } else {
      node = node.children[v]
    }
  }
  return
}

func countPairs(nums []int, low int, high int) (ans int) {
  tree := newTrie()
  for _, x := range nums {
    ans += tree.search(x, high+1) - tree.search(x, low)
    tree.insert(x)
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文