返回介绍

solution / 2600-2699 / 2663.Lexicographically Smallest Beautiful String / README_EN

发布于 2024-06-17 01:03:01 字数 7898 浏览 0 评论 0 收藏 0

2663. Lexicographically Smallest Beautiful String

中文文档

Description

A string is beautiful if:

  • It consists of the first k letters of the English lowercase alphabet.
  • It does not contain any substring of length 2 or more which is a palindrome.

You are given a beautiful string s of length n and a positive integer k.

Return _the lexicographically smallest string of length _n_, which is larger than _s_ and is beautiful_. If there is no such string, return an empty string.

A string a is lexicographically larger than a string b (of the same length) if in the first position where a and b differ, a has a character strictly larger than the corresponding character in b.

  • For example, "abcd" is lexicographically larger than "abcc" because the first position they differ is at the fourth character, and d is greater than c.

 

Example 1:

Input: s = "abcz", k = 26
Output: "abda"
Explanation: The string "abda" is beautiful and lexicographically larger than the string "abcz".
It can be proven that there is no string that is lexicographically larger than the string "abcz", beautiful, and lexicographically smaller than the string "abda".

Example 2:

Input: s = "dc", k = 4
Output: ""
Explanation: It can be proven that there is no string that is lexicographically larger than the string "dc" and is beautiful.

 

Constraints:

  • 1 <= n == s.length <= 105
  • 4 <= k <= 26
  • s is a beautiful string.

Solutions

Solution 1: Greedy

We can find that a palindrome string of length $2$ must have two adjacent characters equal; and a palindrome string of length $3$ must have two characters at the beginning and end equal. Therefore, a beautiful string does not contain any palindrome substring of length $2$ or longer, which means that each character in the string is different from its previous two adjacent characters.

We can greedily search backwards from the last index of the string, find an index $i$ such that the character at index $i$ can be replaced by a slightly larger character, while ensuring that it is different from its two previous adjacent characters.

  • If such an index $i$ is found, then we replace $s[i]$ with $c$, and replace the characters from $s[i+1]$ to $s[n-1]$ with the characters in the first $k$ characters of the alphabet in the order of the minimum dictionary that are not the same as the previous two adjacent characters. After the replacement is completed, we obtain a beautiful string that is the smallest in the dictionary and greater than $s$.
  • If such an index $i$ cannot be found, then we cannot construct a beautiful string greater than $s$ in dictionary order, so return an empty string.

The time complexity is $O(n)$, where $n$ is the length of the string. The space complexity is $O(1)$.

class Solution:
  def smallestBeautifulString(self, s: str, k: int) -> str:
    n = len(s)
    cs = list(s)
    for i in range(n - 1, -1, -1):
      p = ord(cs[i]) - ord('a') + 1
      for j in range(p, k):
        c = chr(ord('a') + j)
        if (i > 0 and cs[i - 1] == c) or (i > 1 and cs[i - 2] == c):
          continue
        cs[i] = c
        for l in range(i + 1, n):
          for m in range(k):
            c = chr(ord('a') + m)
            if (l > 0 and cs[l - 1] == c) or (l > 1 and cs[l - 2] == c):
              continue
            cs[l] = c
            break
        return ''.join(cs)
    return ''
class Solution {
  public String smallestBeautifulString(String s, int k) {
    int n = s.length();
    char[] cs = s.toCharArray();
    for (int i = n - 1; i >= 0; --i) {
      int p = cs[i] - 'a' + 1;
      for (int j = p; j < k; ++j) {
        char c = (char) ('a' + j);
        if ((i > 0 && cs[i - 1] == c) || (i > 1 && cs[i - 2] == c)) {
          continue;
        }
        cs[i] = c;
        for (int l = i + 1; l < n; ++l) {
          for (int m = 0; m < k; ++m) {
            c = (char) ('a' + m);
            if ((l > 0 && cs[l - 1] == c) || (l > 1 && cs[l - 2] == c)) {
              continue;
            }
            cs[l] = c;
            break;
          }
        }
        return String.valueOf(cs);
      }
    }
    return "";
  }
}
class Solution {
public:
  string smallestBeautifulString(string s, int k) {
    int n = s.size();
    for (int i = n - 1; i >= 0; --i) {
      int p = s[i] - 'a' + 1;
      for (int j = p; j < k; ++j) {
        char c = (char) ('a' + j);
        if ((i > 0 && s[i - 1] == c) || (i > 1 && s[i - 2] == c)) {
          continue;
        }
        s[i] = c;
        for (int l = i + 1; l < n; ++l) {
          for (int m = 0; m < k; ++m) {
            c = (char) ('a' + m);
            if ((l > 0 && s[l - 1] == c) || (l > 1 && s[l - 2] == c)) {
              continue;
            }
            s[l] = c;
            break;
          }
        }
        return s;
      }
    }
    return "";
  }
};
func smallestBeautifulString(s string, k int) string {
  cs := []byte(s)
  n := len(cs)
  for i := n - 1; i >= 0; i-- {
    p := int(cs[i] - 'a' + 1)
    for j := p; j < k; j++ {
      c := byte('a' + j)
      if (i > 0 && cs[i-1] == c) || (i > 1 && cs[i-2] == c) {
        continue
      }
      cs[i] = c
      for l := i + 1; l < n; l++ {
        for m := 0; m < k; m++ {
          c = byte('a' + m)
          if (l > 0 && cs[l-1] == c) || (l > 1 && cs[l-2] == c) {
            continue
          }
          cs[l] = c
          break
        }
      }
      return string(cs)
    }
  }
  return ""
}
function smallestBeautifulString(s: string, k: number): string {
  const cs: string[] = s.split('');
  const n = cs.length;
  for (let i = n - 1; i >= 0; --i) {
    const p = cs[i].charCodeAt(0) - 97 + 1;
    for (let j = p; j < k; ++j) {
      let c = String.fromCharCode(j + 97);
      if ((i > 0 && cs[i - 1] === c) || (i > 1 && cs[i - 2] === c)) {
        continue;
      }
      cs[i] = c;
      for (let l = i + 1; l < n; ++l) {
        for (let m = 0; m < k; ++m) {
          c = String.fromCharCode(m + 97);
          if ((l > 0 && cs[l - 1] === c) || (l > 1 && cs[l - 2] === c)) {
            continue;
          }
          cs[l] = c;
          break;
        }
      }
      return cs.join('');
    }
  }
  return '';
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文