返回介绍

2.10 迹运算

发布于 2024-01-20 12:27:18 字数 1488 浏览 0 评论 0 收藏 0

迹运算返回的是矩阵对角元素的和:

迹运算因为很多原因而有用。若不使用求和符号,有些矩阵运算很难描述,而通过矩阵乘法和迹运算符号可以清楚地表示。例如,迹运算提供了另一种描述矩阵Frobenius范数的方式:

用迹运算表示表达式,我们可以使用很多有用的等式巧妙地处理表达式。例如,迹运算在转置运算下是不变的:

多个矩阵相乘得到的方阵的迹,和将这些矩阵中的最后一个挪到最前面之后相乘的迹是相同的。当然,我们需要考虑挪动之后矩阵乘积依然定义良好:

或者更一般地,

即使循环置换后矩阵乘积得到的矩阵形状变了,迹运算的结果依然不变。例如,假设矩阵,矩阵,我们可以得到

尽管

另一个有用的事实是标量在迹运算后仍然是它自己:a=Tr(a)。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文