返回介绍

solution / 1400-1499 / 1489.Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree / README_EN

发布于 2024-06-17 01:03:19 字数 9654 浏览 0 评论 0 收藏 0

1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree

中文文档

Description

Given a weighted undirected connected graph with n vertices numbered from 0 to n - 1, and an array edges where edges[i] = [ai, bi, weighti] represents a bidirectional and weighted edge between nodes ai and bi. A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.

Find _all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST)_. An MST edge whose deletion from the graph would cause the MST weight to increase is called a _critical edge_. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.

Note that you can return the indices of the edges in any order.

 

Example 1:

Input: n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]
Output: [[0,1],[2,3,4,5]]
Explanation: The figure above describes the graph.
The following figure shows all the possible MSTs:

Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.

Example 2:

Input: n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
Output: [[],[0,1,2,3]]
Explanation: We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.

 

Constraints:

  • 2 <= n <= 100
  • 1 <= edges.length <= min(200, n * (n - 1) / 2)
  • edges[i].length == 3
  • 0 <= ai < bi < n
  • 1 <= weighti <= 1000
  • All pairs (ai, bi) are distinct.

Solutions

Solution 1

class UnionFind:
  def __init__(self, n):
    self.p = list(range(n))
    self.n = n

  def union(self, a, b):
    if self.find(a) == self.find(b):
      return False
    self.p[self.find(a)] = self.find(b)
    self.n -= 1
    return True

  def find(self, x):
    if self.p[x] != x:
      self.p[x] = self.find(self.p[x])
    return self.p[x]


class Solution:
  def findCriticalAndPseudoCriticalEdges(
    self, n: int, edges: List[List[int]]
  ) -> List[List[int]]:
    for i, e in enumerate(edges):
      e.append(i)
    edges.sort(key=lambda x: x[2])
    uf = UnionFind(n)
    v = sum(w for f, t, w, _ in edges if uf.union(f, t))
    ans = [[], []]
    for f, t, w, i in edges:
      uf = UnionFind(n)
      k = sum(z for x, y, z, j in edges if j != i and uf.union(x, y))
      if uf.n > 1 or (uf.n == 1 and k > v):
        ans[0].append(i)
        continue

      uf = UnionFind(n)
      uf.union(f, t)
      k = w + sum(z for x, y, z, j in edges if j != i and uf.union(x, y))
      if k == v:
        ans[1].append(i)
    return ans
class Solution {
  public List<List<Integer>> findCriticalAndPseudoCriticalEdges(int n, int[][] edges) {
    for (int i = 0; i < edges.length; ++i) {
      int[] e = edges[i];
      int[] t = new int[4];
      System.arraycopy(e, 0, t, 0, 3);
      t[3] = i;
      edges[i] = t;
    }
    Arrays.sort(edges, Comparator.comparingInt(a -> a[2]));
    int v = 0;
    UnionFind uf = new UnionFind(n);
    for (int[] e : edges) {
      int f = e[0], t = e[1], w = e[2];
      if (uf.union(f, t)) {
        v += w;
      }
    }
    List<List<Integer>> ans = new ArrayList<>();
    for (int i = 0; i < 2; ++i) {
      ans.add(new ArrayList<>());
    }
    for (int[] e : edges) {
      int f = e[0], t = e[1], w = e[2], i = e[3];
      uf = new UnionFind(n);
      int k = 0;
      for (int[] ne : edges) {
        int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
        if (j != i && uf.union(x, y)) {
          k += z;
        }
      }
      if (uf.getN() > 1 || (uf.getN() == 1 && k > v)) {
        ans.get(0).add(i);
        continue;
      }
      uf = new UnionFind(n);
      uf.union(f, t);
      k = w;
      for (int[] ne : edges) {
        int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
        if (j != i && uf.union(x, y)) {
          k += z;
        }
      }
      if (k == v) {
        ans.get(1).add(i);
      }
    }
    return ans;
  }
}

class UnionFind {
  private int[] p;
  private int n;

  public UnionFind(int n) {
    p = new int[n];
    this.n = n;
    for (int i = 0; i < n; ++i) {
      p[i] = i;
    }
  }

  public int getN() {
    return n;
  }

  public boolean union(int a, int b) {
    if (find(a) == find(b)) {
      return false;
    }
    p[find(a)] = find(b);
    --n;
    return true;
  }

  public int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }
}
class UnionFind {
public:
  vector<int> p;
  int n;

  UnionFind(int _n)
    : n(_n)
    , p(_n) {
    iota(p.begin(), p.end(), 0);
  }

  bool unite(int a, int b) {
    if (find(a) == find(b)) return false;
    p[find(a)] = find(b);
    --n;
    return true;
  }

  int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
  }
};

class Solution {
public:
  vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n, vector<vector<int>>& edges) {
    for (int i = 0; i < edges.size(); ++i) edges[i].push_back(i);
    sort(edges.begin(), edges.end(), [](auto& a, auto& b) { return a[2] < b[2]; });
    int v = 0;
    UnionFind uf(n);
    for (auto& e : edges) {
      int f = e[0], t = e[1], w = e[2];
      if (uf.unite(f, t)) v += w;
    }
    vector<vector<int>> ans(2);
    for (auto& e : edges) {
      int f = e[0], t = e[1], w = e[2], i = e[3];
      UnionFind ufa(n);
      int k = 0;
      for (auto& ne : edges) {
        int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
        if (j != i && ufa.unite(x, y)) k += z;
      }
      if (ufa.n > 1 || (ufa.n == 1 && k > v)) {
        ans[0].push_back(i);
        continue;
      }

      UnionFind ufb(n);
      ufb.unite(f, t);
      k = w;
      for (auto& ne : edges) {
        int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
        if (j != i && ufb.unite(x, y)) k += z;
      }
      if (k == v) ans[1].push_back(i);
    }
    return ans;
  }
};
type unionFind struct {
  p []int
  n int
}

func newUnionFind(n int) *unionFind {
  p := make([]int, n)
  for i := range p {
    p[i] = i
  }
  return &unionFind{p, n}
}

func (uf *unionFind) find(x int) int {
  if uf.p[x] != x {
    uf.p[x] = uf.find(uf.p[x])
  }
  return uf.p[x]
}

func (uf *unionFind) union(a, b int) bool {
  if uf.find(a) == uf.find(b) {
    return false
  }
  uf.p[uf.find(a)] = uf.find(b)
  uf.n--
  return true
}

func findCriticalAndPseudoCriticalEdges(n int, edges [][]int) [][]int {
  for i := range edges {
    edges[i] = append(edges[i], i)
  }
  sort.Slice(edges, func(i, j int) bool {
    return edges[i][2] < edges[j][2]
  })
  v := 0
  uf := newUnionFind(n)
  for _, e := range edges {
    f, t, w := e[0], e[1], e[2]
    if uf.union(f, t) {
      v += w
    }
  }
  ans := make([][]int, 2)
  for _, e := range edges {
    f, t, w, i := e[0], e[1], e[2], e[3]
    uf = newUnionFind(n)
    k := 0
    for _, ne := range edges {
      x, y, z, j := ne[0], ne[1], ne[2], ne[3]
      if j != i && uf.union(x, y) {
        k += z
      }
    }
    if uf.n > 1 || (uf.n == 1 && k > v) {
      ans[0] = append(ans[0], i)
      continue
    }
    uf = newUnionFind(n)
    uf.union(f, t)
    k = w
    for _, ne := range edges {
      x, y, z, j := ne[0], ne[1], ne[2], ne[3]
      if j != i && uf.union(x, y) {
        k += z
      }
    }
    if k == v {
      ans[1] = append(ans[1], i)
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文