返回介绍

3.4 结语

发布于 2024-01-27 20:58:55 字数 596 浏览 0 评论 0 收藏 0

在本书中,我希望你已经明白,人类能够轻而易举解决的一些问题,对传统计算机而言却难以解决。图像识别就是这些所谓的“人工智能”的挑战之一。

神经网络使图像识别以及广泛的其他各类难题,都获得了空前的进步。求解这类难题的早期动力的一个关键性部分是生物大脑,如鸽子或昆虫的大脑,虽然这些生物大脑比起今天的超级计算机似乎简单一些,反应也较慢,但是它们依然能够执行复杂的任务,如飞行、喂食、建设家园。这些生物大脑对损害或对不完美的信号,也非常有弹性。数字计算机和传统计算却不能拥有这种能力。

今天,在人工智能中,神经网络是一些神奇的应用程序成功的关键部分。人们对神经网络和机器学习,特别是深度学习——也就是使用了有层次结构的机器学习方法,依然充满了巨大兴趣。在2016年年初,在古老的围棋对弈领域,谷歌的DeepMind击败了世界级大师。和国际象棋相比,围棋需要更深入的战略,更加微妙,研究人员原本以为计算机需要好几年的时间才能下得好围棋。因此,此次事件成为了人工智能史上一个巨大的里程碑。神经网络在计算机的成功中发挥了关键作用。

我希望你已经明白了,神经网络背后的核心思想其实是非常简单的。我希望你也可以从神经网络的实验中找到乐趣。也许,你已经有了探索其他类型的机器学习和人工智能的兴趣。

如果你做到了这些事情,那么我就算大功告成了。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文