- 第一章 CPU 简介
- 第二章 Hello,world!
- 第三章 函数开始和结束
- 第四章 栈
- Chapter 5 printf() 与参数处理
- Chapter 6 scanf()
- CHAPER7 访问传递参数
- Chapter 8 一个或者多个字的返回值
- Chapter 9 指针
- Chapter 10 条件跳转
- 第 11 章 选择结构 switch()/case/default
- 第 12 章 循环结构
- 第 13 章 strlen()
- Chapter 14 Division by 9
- chapter 15 用 FPU 工作
- Chapter 16 数组
- Chapter 17 位域
- 第 18 章 结构体
- 19 章 联合体
- 第二十章 函数指针
- 第 21 章 在 32 位环境中的 64 位值
- 第二十二章 SIMD
- 23 章 64 位化
- 24 章 使用 x64 下的 SIMD 来处理浮点数
- 25 章 温度转换
- 26 章 C99 的限制
- 27 章 内联函数
- 第 28 章 得到不正确反汇编结果
- 第 29 章 花指令
- 第 30 章 16 位 Windows
- 第 31 章 类
- 三十二 ostream
- 34.2.2 MSVC
- 34.2.3 C++ 11 std::forward_list
- 34.3 std::vector
- 34.4 std::map and std::set
20.1 MSVC
MSVC2010 /Ox 选项编译:
Listing 20.1: Optimizing MSVC 2010: /Ox /GS- /MD
#!bash
__a$ = 8 ; size = 4
__b$ = 12 ; size = 4
_comp PROC
mov eax, DWORD PTR __a$[esp-4]
mov ecx, DWORD PTR __b$[esp-4]
mov eax, DWORD PTR [eax]
mov ecx, DWORD PTR [ecx]
cmp eax, ecx
jne SHORT $LN4@comp
xor eax, eax
ret 0
$LN4@comp:
xor edx, edx
cmp eax, ecx
setge dl
lea eax, DWORD PTR [edx+edx-1]
ret 0
_comp ENDP
_numbers$ = -40 ; size = 40
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_main PROC
sub esp, 40 ; 00000028H
push esi
push OFFSET _comp
push 4
lea eax, DWORD PTR _numbers$[esp+52]
push 10 ; 0000000aH
push eax
mov DWORD PTR _numbers$[esp+60], 1892 ; 00000764H
mov DWORD PTR _numbers$[esp+64], 45 ; 0000002dH
mov DWORD PTR _numbers$[esp+68], 200 ; 000000c8H
mov DWORD PTR _numbers$[esp+72], -98 ; ffffff9eH
mov DWORD PTR _numbers$[esp+76], 4087 ; 00000ff7H
mov DWORD PTR _numbers$[esp+80], 5
mov DWORD PTR _numbers$[esp+84], -12345 ; ffffcfc7H
mov DWORD PTR _numbers$[esp+88], 1087 ; 0000043fH
mov DWORD PTR _numbers$[esp+92], 88 ; 00000058H
mov DWORD PTR _numbers$[esp+96], -100000 ; fffe7960H
call _qsort
add esp, 16 ; 00000010H
...
第四个参数传递了一个地址标签_comp,指向了 comp() 函数。
我们来看 MSVCR80.DLL(包含 C 标准库函数的 MSVC DLL 模块)里该函数的内部调用:
Listing 20.2: MSVCR80.DLL
#!bash
.text:7816CBF0 ; void __cdecl qsort(void *, unsigned int, unsigned int, int (__cdecl *)(const void *, const void *))
.text:7816CBF0 public _qsort
.text:7816CBF0 _qsort proc near
.text:7816CBF0
.text:7816CBF0 lo = dword ptr -104h
.text:7816CBF0 hi = dword ptr -100h
.text:7816CBF0 var_FC = dword ptr -0FCh
.text:7816CBF0 stkptr = dword ptr -0F8h
.text:7816CBF0 lostk = dword ptr -0F4h
.text:7816CBF0 histk = dword ptr -7Ch
.text:7816CBF0 base = dword ptr 4
.text:7816CBF0 num = dword ptr 8
.text:7816CBF0 width = dword ptr 0Ch
.text:7816CBF0 comp = dword ptr 10h
.text:7816CBF0
.text:7816CBF0 sub esp, 100h
....
.text:7816CCE0 loc_7816CCE0: ; CODE XREF: _qsort+B1
.text:7816CCE0 shr eax, 1
.text:7816CCE2 imul eax, ebp
.text:7816CCE5 add eax, ebx
.text:7816CCE7 mov edi, eax
.text:7816CCE9 push edi
.text:7816CCEA push ebx
.text:7816CCEB call [esp+118h+comp]
.text:7816CCF2 add esp, 8
.text:7816CCF5 test eax, eax
.text:7816CCF7 jle short loc_7816CD04
第四个参数 comp 传递函数指针,comp() 有两个参数,参数被检测后才执行。
这种使用函数指针的方式有一定的风险。第一种原因是如果你用 qsort() 调用了错误的函数指针,可能造成程序崩溃,并且这个错误很难被发现。
第二个原因是即使回调函数类型完全正确,使用错误的参数调用函数可能会导致更严重的问题。进程崩溃不是最大的问题,最大的问题是崩溃的原因—编译器很难发现这种潜在的问题。
20.1.1 MSVC + OllyDbg
我们在 OD 中加载我们的例子,并在 comp() 函数下断点。
我们可以看到第一次 comp() 调用时是如何比较的:fig.20.1.OD 代码窗口显示了比较的值。我们还可以看到 SP 指向的 RA 地址在 qsort() 函数空间里(实际上位于 MSVCR100.DLL)。
按 F8 直到函数返回到 qsort() 函数:fig20.2.这里比较函数被调用。
第二次调用 comp()—当前比较的值不相同:fig203。
Figure 20.1: OllyDbg: first call of comp()
Figure 20.2: OllyDbg: the code in qsort() right a_er comp() call
Figure 20.3: OllyDbg: second call of comp()
20.1.2 MSVC + tracer
我们来看成对比较,来对 10 个数字进行排序:1892, 45, 200, -98, 4087, 5, -12345, 1087, 88,-100000.
我们找到 comp() 函数中的 CMP 指令地址,并在其地址 0x0040100C 上设置断点。
#!bash
tracer.exe -l:17_1.exe bpx=17_1.exe!0x0040100C
断点中断是的寄存器地址:
#!bash
PID=4336|New process 17_1.exe
(0) 17_1.exe!0x40100c
EAX=0x00000764 EBX=0x0051f7c8 ECX=0x00000005 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=IF
(0) 17_1.exe!0x40100c
EAX=0x00000005 EBX=0x0051f7c8 ECX=0xfffe7960 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=PF ZF IF
(0) 17_1.exe!0x40100c
EAX=0x00000764 EBX=0x0051f7c8 ECX=0x00000005 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=CF PF ZF IF
...
过滤 EAX 和 ECX 得到:
EAX=0x00000764 ECX=0x00000005
EAX=0x00000005 ECX=0xfffe7960
EAX=0x00000764 ECX=0x00000005
EAX=0x0000002d ECX=0x00000005
EAX=0x00000058 ECX=0x00000005
EAX=0x0000043f ECX=0x00000005
EAX=0xffffcfc7 ECX=0x00000005
EAX=0x000000c8 ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0x00000ff7 ECX=0x00000005
EAX=0x00000ff7 ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0x00000005 ECX=0xffffcfc7
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0xffffff9e ECX=0xffffcfc7
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0x000000c8 ECX=0x00000ff7
EAX=0x0000002d ECX=0x00000ff7
EAX=0x0000043f ECX=0x00000ff7
EAX=0x00000058 ECX=0x00000ff7
EAX=0x00000764 ECX=0x00000ff7
EAX=0x000000c8 ECX=0x00000764
EAX=0x0000002d ECX=0x00000764
EAX=0x0000043f ECX=0x00000764
EAX=0x00000058 ECX=0x00000764
EAX=0x000000c8 ECX=0x00000058
EAX=0x0000002d ECX=0x000000c8
EAX=0x0000043f ECX=0x000000c8
EAX=0x000000c8 ECX=0x00000058
EAX=0x0000002d ECX=0x000000c8
EAX=0x0000002d ECX=0x00000058
有 34 对。因此快速排序算法对 10 个数字排序需要 34 此对比操作。
20.1.3 MSVC + tracer (code coverage)
我们使用跟踪特性收集寄存器的值并在 IDA 中查看。
跟踪 comp() 函数所有指令:
tracer.exe -l:17_1.exe bpf=17_1.exe!0x00401000,trace:cc
IDA 加载.idc 脚本:fig20.4。
IDA 给出了函数名字(PtFuncCompare)—IDA 认为该函数指针被传递给 qsort()。
可以看到 a 和 b 指向数组不同的位置,并且相差 4-32bit 的字节数。
0x401010 和 0x401012 之间的指令从没有被执行:事实上 comp() 从来不返回 0,因为没有相等的元素。
Figure 20.4: tracer and IDA. N.B.: some values are cutted at right
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论