返回介绍

4.4 内存与缓存 *

发布于 2024-06-09 00:03:45 字数 3792 浏览 0 评论 0 收藏 0

在本章的前两节中,我们探讨了数组和链表这两种基础且重要的数据结构,它们分别代表了“连续存储”和“分散存储”两种物理结构。

实际上,物理结构在很大程度上决定了程序对内存和缓存的使用效率,进而影响算法程序的整体性能。

4.4.1   计算机存储设备

计算机中包括三种类型的存储设备:硬盘(hard disk)内存(random-access memory, RAM)缓存(cache memory)。表 4-2 展示了它们在计算机系统中的不同角色和性能特点。

表 4-2   计算机的存储设备

硬盘内存缓存
用途长期存储数据,包括操作系统、程序、文件等临时存储当前运行的程序和正在处理的数据存储经常访问的数据和指令,减少 CPU 访问内存的次数
易失性断电后数据不会丢失断电后数据会丢失断电后数据会丢失
容量较大,TB 级别较小,GB 级别非常小,MB 级别
速度较慢,几百到几千 MB/s较快,几十 GB/s非常快,几十到几百 GB/s
价格较便宜,几毛到几元 / GB较贵,几十到几百元 / GB非常贵,随 CPU 打包计价

我们可以将计算机存储系统想象为图 4-9 所示的金字塔结构。越靠近金字塔顶端的存储设备的速度越快、容量越小、成本越高。这种多层级的设计并非偶然,而是计算机科学家和工程师们经过深思熟虑的结果。

  • 硬盘难以被内存取代。首先,内存中的数据在断电后会丢失,因此它不适合长期存储数据;其次,内存的成本是硬盘的几十倍,这使得它难以在消费者市场普及。
  • 缓存的大容量和高速度难以兼得。随着 L1、L2、L3 缓存的容量逐步增大,其物理尺寸会变大,与 CPU 核心之间的物理距离会变远,从而导致数据传输时间增加,元素访问延迟变高。在当前技术下,多层级的缓存结构是容量、速度和成本之间的最佳平衡点。

计算机存储系统

图 4-9   计算机存储系统

Tip

计算机的存储层次结构体现了速度、容量和成本三者之间的精妙平衡。实际上,这种权衡普遍存在于所有工业领域,它要求我们在不同的优势和限制之间找到最佳平衡点。

总的来说,硬盘用于长期存储大量数据,内存用于临时存储程序运行中正在处理的数据,而缓存则用于存储经常访问的数据和指令,以提高程序运行效率。三者共同协作,确保计算机系统高效运行。

如图 4-10 所示,在程序运行时,数据会从硬盘中被读取到内存中,供 CPU 计算使用。缓存可以看作 CPU 的一部分,它通过智能地从内存加载数据,给 CPU 提供高速的数据读取,从而显著提升程序的执行效率,减少对较慢的内存的依赖。

硬盘、内存和缓存之间的数据流通

图 4-10   硬盘、内存和缓存之间的数据流通

4.4.2   数据结构的内存效率

在内存空间利用方面,数组和链表各自具有优势和局限性。

一方面,内存是有限的,且同一块内存不能被多个程序共享,因此我们希望数据结构能够尽可能高效地利用空间。数组的元素紧密排列,不需要额外的空间来存储链表节点间的引用(指针),因此空间效率更高。然而,数组需要一次性分配足够的连续内存空间,这可能导致内存浪费,数组扩容也需要额外的时间和空间成本。相比之下,链表以“节点”为单位进行动态内存分配和回收,提供了更大的灵活性。

另一方面,在程序运行时,随着反复申请与释放内存,空闲内存的碎片化程度会越来越高,从而导致内存的利用效率降低。数组由于其连续的存储方式,相对不容易导致内存碎片化。相反,链表的元素是分散存储的,在频繁的插入与删除操作中,更容易导致内存碎片化。

4.4.3   数据结构的缓存效率

缓存虽然在空间容量上远小于内存,但它比内存快得多,在程序执行速度上起着至关重要的作用。由于缓存的容量有限,只能存储一小部分频繁访问的数据,因此当 CPU 尝试访问的数据不在缓存中时,就会发生缓存未命中(cache miss),此时 CPU 不得不从速度较慢的内存中加载所需数据。

显然,“缓存未命中”越少,CPU 读写数据的效率就越高,程序性能也就越好。我们将 CPU 从缓存中成功获取数据的比例称为缓存命中率(cache hit rate),这个指标通常用来衡量缓存效率。

为了尽可能达到更高的效率,缓存会采取以下数据加载机制。

  • 缓存行:缓存不是单个字节地存储与加载数据,而是以缓存行为单位。相比于单个字节的传输,缓存行的传输形式更加高效。
  • 预取机制:处理器会尝试预测数据访问模式(例如顺序访问、固定步长跳跃访问等),并根据特定模式将数据加载至缓存之中,从而提升命中率。
  • 空间局部性:如果一个数据被访问,那么它附近的数据可能近期也会被访问。因此,缓存在加载某一数据时,也会加载其附近的数据,以提高命中率。
  • 时间局部性:如果一个数据被访问,那么它在不久的将来很可能再次被访问。缓存利用这一原理,通过保留最近访问过的数据来提高命中率。

实际上,数组和链表对缓存的利用效率是不同的,主要体现在以下几个方面。

  • 占用空间:链表元素比数组元素占用空间更多,导致缓存中容纳的有效数据量更少。
  • 缓存行:链表数据分散在内存各处,而缓存是“按行加载”的,因此加载到无效数据的比例更高。
  • 预取机制:数组比链表的数据访问模式更具“可预测性”,即系统更容易猜出即将被加载的数据。
  • 空间局部性:数组被存储在集中的内存空间中,因此被加载数据附近的数据更有可能即将被访问。

总体而言,数组具有更高的缓存命中率,因此它在操作效率上通常优于链表。这使得在解决算法问题时,基于数组实现的数据结构往往更受欢迎。

需要注意的是,高缓存效率并不意味着数组在所有情况下都优于链表。实际应用中选择哪种数据结构,应根据具体需求来决定。例如,数组和链表都可以实现“栈”数据结构(下一章会详细介绍),但它们适用于不同场景。

  • 在做算法题时,我们会倾向于选择基于数组实现的栈,因为它提供了更高的操作效率和随机访问的能力,代价仅是需要预先为数组分配一定的内存空间。
  • 如果数据量非常大、动态性很高、栈的预期大小难以估计,那么基于链表实现的栈更加合适。链表能够将大量数据分散存储于内存的不同部分,并且避免了数组扩容产生的额外开销。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文