- GUI
- Windows API tutorial
- Introduction to Windows API
- Windows API main functions
- System functions in Windows API
- Strings in Windows API
- Date & time in Windows API
- A window in Windows API
- First steps in UI
- Windows API menus
- Windows API dialogs
- Windows API controls I
- Windows API controls II
- Windows API controls III
- Advanced controls in Windows API
- Custom controls in Windows API
- The GDI in Windows API
- PyQt4 tutorial
- PyQt5 tutorial
- Qt4 tutorial
- Introduction to Qt4 toolkit
- Qt4 utility classes
- Strings in Qt4
- Date and time in Qt4
- Working with files and directories in Qt4
- First programs in Qt4
- Menus and toolbars in Qt4
- Layout management in Qt4
- Events and signals in Qt4
- Qt4 Widgets
- Qt4 Widgets II
- Painting in Qt4
- Custom widget in Qt4
- The Breakout game in Qt4
- Qt5 tutorial
- Introduction to Qt5 toolkit
- Strings in Qt5
- Date and time in Qt5
- Containers in Qt5
- Working with files and directories in Qt5
- First programs in Qt5
- Menus and toolbars in Qt5
- Layout management in Qt5
- Events and signals in Qt5
- Qt5 Widgets
- Qt5 Widgets II
- Painting in Qt5
- Custom widget in Qt5
- Snake in Qt5
- The Breakout game in Qt5
- PySide tutorial
- Tkinter tutorial
- Tcl/Tk tutorial
- Qt Quick tutorial
- Java Swing tutorial
- JavaFX tutorial
- Java SWT tutorial
- wxWidgets tutorial
- Introduction to wxWidgets
- wxWidgets helper classes
- First programs in wxWidgets
- Menus and toolbars in wxWidgets
- Layout management in wxWidgets
- Events in wxWidgets
- Dialogs in wxWidgets
- wxWidgets widgets
- wxWidgets widgets II
- Drag and Drop in wxWidgets
- Device Contexts in wxWidgets
- Custom widgets in wxWidgets
- The Tetris game in wxWidgets
- wxPython tutorial
- Introduction to wxPython
- First Steps
- Menus and toolbars
- Layout management in wxPython
- Events in wxPython
- wxPython dialogs
- Widgets
- Advanced widgets in wxPython
- Drag and drop in wxPython
- Internationalisation
- Application skeletons in wxPython
- The GDI
- Mapping modes
- Creating custom widgets
- Tips and Tricks
- wxPython Gripts
- The Tetris game in wxPython
- C# Winforms Mono tutorial
- Java Gnome tutorial
- Introduction to Java Gnome
- First steps in Java Gnome
- Layout management in Java Gnome
- Layout management II in Java Gnome
- Menus in Java Gnome
- Toolbars in Java Gnome
- Events in Java Gnome
- Widgets in Java Gnome
- Widgets II in Java Gnome
- Advanced widgets in Java Gnome
- Dialogs in Java Gnome
- Pango in Java Gnome
- Drawing with Cairo in Java Gnome
- Drawing with Cairo II
- Nibbles in Java Gnome
- QtJambi tutorial
- GTK+ tutorial
- Ruby GTK tutorial
- GTK# tutorial
- Visual Basic GTK# tutorial
- PyGTK tutorial
- Introduction to PyGTK
- First steps in PyGTK
- Layout management in PyGTK
- Menus in PyGTK
- Toolbars in PyGTK
- Signals & events in PyGTK
- Widgets in PyGTK
- Widgets II in PyGTK
- Advanced widgets in PyGTK
- Dialogs in PyGTK
- Pango
- Pango II
- Drawing with Cairo in PyGTK
- Drawing with Cairo II
- Snake game in PyGTK
- Custom widget in PyGTK
- PHP GTK tutorial
- C# Qyoto tutorial
- Ruby Qt tutorial
- Visual Basic Qyoto tutorial
- Mono IronPython Winforms tutorial
- Introduction
- First steps in IronPython Mono Winforms
- Layout management
- Menus and toolbars
- Basic Controls in Mono Winforms
- Basic Controls II in Mono Winforms
- Advanced Controls in Mono Winforms
- Dialogs
- Drag & drop in Mono Winforms
- Painting
- Painting II in IronPython Mono Winforms
- Snake in IronPython Mono Winforms
- The Tetris game in IronPython Mono Winforms
- FreeBASIC GTK tutorial
- Jython Swing tutorial
- JRuby Swing tutorial
- Visual Basic Winforms tutorial
- JavaScript GTK tutorial
- Ruby HTTPClient tutorial
- Ruby Faraday tutorial
- Ruby Net::HTTP tutorial
- Java 2D games tutorial
- Java 2D tutorial
- Cairo graphics tutorial
- PyCairo tutorial
- HTML5 canvas tutorial
- Python tutorial
- Python language
- Interactive Python
- Python lexical structure
- Python data types
- Strings in Python
- Python lists
- Python dictionaries
- Python operators
- Keywords in Python
- Functions in Python
- Files in Python
- Object-oriented programming in Python
- Modules
- Packages in Python
- Exceptions in Python
- Iterators and Generators
- Introspection in Python
- Ruby tutorial
- PHP tutorial
- Visual Basic tutorial
- Visual Basic
- Visual Basic lexical structure
- Basics
- Visual Basic data types
- Strings in Visual Basic
- Operators
- Flow control
- Visual Basic arrays
- Procedures & functions in Visual Basic
- Organizing code in Visual Basic
- Object-oriented programming
- Object-oriented programming II in Visual Basic
- Collections in Visual Basic
- Input & output
- Tcl tutorial
- C# tutorial
- Java tutorial
- AWK tutorial
- Jetty tutorial
- Tomcat Derby tutorial
- Jtwig tutorial
- Android tutorial
- Introduction to Android development
- First Android application
- Android Button widgets
- Android Intents
- Layout management in Android
- Android Spinner widget
- SeekBar widget
- Android ProgressBar widget
- Android ListView widget
- Android Pickers
- Android menus
- Dialogs
- Drawing in Android
- Java EE 5 tutorials
- Introduction
- Installing Java
- Installing NetBeans 6
- Java Application Servers
- Resin CGIServlet
- JavaServer Pages, (JSPs)
- Implicit objects in JSPs
- Shopping cart
- JSP & MySQL Database
- Java Servlets
- Sending email in a Servlet
- Creating a captcha in a Servlet
- DataSource & DriverManager
- Java Beans
- Custom JSP tags
- Object relational mapping with iBATIS
- Jsoup tutorial
- MySQL tutorial
- MySQL quick tutorial
- MySQL storage engines
- MySQL data types
- Creating, altering and dropping tables in MySQL
- MySQL expressions
- Inserting, updating, and deleting data in MySQL
- The SELECT statement in MySQL
- MySQL subqueries
- MySQL constraints
- Exporting and importing data in MySQL
- Joining tables in MySQL
- MySQL functions
- Views in MySQL
- Transactions in MySQL
- MySQL stored routines
- MySQL Python tutorial
- MySQL Perl tutorial
- MySQL C API programming tutorial
- MySQL Visual Basic tutorial
- MySQL PHP tutorial
- MySQL Java tutorial
- MySQL Ruby tutorial
- MySQL C# tutorial
- SQLite tutorial
- SQLite C tutorial
- SQLite PHP tutorial
- SQLite Python tutorial
- SQLite Perl tutorial
- SQLite Ruby tutorial
- SQLite C# tutorial
- SQLite Visual Basic tutorial
- PostgreSQL C tutorial
- PostgreSQL Python tutorial
- PostgreSQL Ruby tutorial
- PostgreSQL PHP tutorial
- PostgreSQL Java tutorial
- Apache Derby tutorial
- SQLAlchemy tutorial
- MongoDB PHP tutorial
- MongoDB Java tutorial
- MongoDB JavaScript tutorial
- MongoDB Ruby tutorial
- Spring JdbcTemplate tutorial
- JDBI tutorial
Tetris
In this chapter, we will create a Tetris game clone in Java Swing. It is modified and simplified.
Tetris
The Tetris game is one of the most popular computer games ever created. The original game was designed and programmed by a Russian programmer Alexey Pajitnov in 1985. Since then, Tetris is available on almost every computer platform in lots of variations. Even my mobile phone has a modified version of the Tetris game.
Tetris is called a falling block puzzle game. In this game, we have seven different shapes called tetrominoes
. S-shape, Z-shape, T-shape, L-shape, Line-shape, MirroredL-shape and a Square-shape. Each of these shapes is formed with four squares. The shapes are falling down the board. The object of the Tetris game is to move and rotate the shapes, so that they fit as much as possible. If we manage to form a row, the row is destroyed and we score. We play the tetris game until we top out.

The development
We do not have images for our tetris game, we draw the tetrominoes using Swing drawing API. Behind every computer game, there is a mathematical model. So it is in Tetris.
Some ideas behind the game.
- We use a
Timer
class to create a game cycle - The tetrominoes are drawn
- The shapes move on a square by square basis (not pixel by pixel)
- Mathematically a board is a simple list of numbers
I have simplified the game a bit, so that it is easier to understand. The game starts immediately, after it is launched. We can pause the game by pressing the p key. The space key will drop the tetris piece immediately to the bottom. The d key will drop the piece one line down. (It can be used to speed up the falling a bit.) The game goes at constant speed, no acceleration is implemented. The score is the number of lines that we have removed.
Tetris.java
package tetris; import java.awt.BorderLayout; import javax.swing.JFrame; import javax.swing.JLabel; public class Tetris extends JFrame { JLabel statusbar; public Tetris() { statusbar = new JLabel(" 0"); add(statusbar, BorderLayout.SOUTH); Board board = new Board(this); add(board); board.start(); setSize(200, 400); setTitle("Tetris"); setDefaultCloseOperation(EXIT_ON_CLOSE); } public JLabel getStatusBar() { return statusbar; } public static void main(String[] args) { Tetris game = new Tetris(); game.setLocationRelativeTo(null); game.setVisible(true); } }
In the Tetris.java
file, we set up the game. We create a board on which we play the game. We create a statusbar.
board.start();
The start()
method starts the Tetris game. Immediately, after the window appears on the screen.
Shape.java
package tetris; import java.util.Random; import java.lang.Math; public class Shape { enum Tetrominoes { NoShape, ZShape, SShape, LineShape, TShape, SquareShape, LShape, MirroredLShape }; private Tetrominoes pieceShape; private int coords[][]; private int[][][] coordsTable; public Shape() { coords = new int[4][2]; setShape(Tetrominoes.NoShape); } public void setShape(Tetrominoes shape) { coordsTable = new int[][][] { { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, { { 0, -1 }, { 0, 0 }, { -1, 0 }, { -1, 1 } }, { { 0, -1 }, { 0, 0 }, { 1, 0 }, { 1, 1 } }, { { 0, -1 }, { 0, 0 }, { 0, 1 }, { 0, 2 } }, { { -1, 0 }, { 0, 0 }, { 1, 0 }, { 0, 1 } }, { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } }, { { -1, -1 }, { 0, -1 }, { 0, 0 }, { 0, 1 } }, { { 1, -1 }, { 0, -1 }, { 0, 0 }, { 0, 1 } } }; for (int i = 0; i < 4 ; i++) { for (int j = 0; j < 2; ++j) { coords[i][j] = coordsTable[shape.ordinal()][i][j]; } } pieceShape = shape; } private void setX(int index, int x) { coords[index][0] = x; } private void setY(int index, int y) { coords[index][1] = y; } public int x(int index) { return coords[index][0]; } public int y(int index) { return coords[index][1]; } public Tetrominoes getShape() { return pieceShape; } public void setRandomShape() { Random r = new Random(); int x = Math.abs(r.nextInt()) % 7 + 1; Tetrominoes[] values = Tetrominoes.values(); setShape(values[x]); } public int minX() { int m = coords[0][0]; for (int i=0; i < 4; i++) { m = Math.min(m, coords[i][0]); } return m; } public int minY() { int m = coords[0][1]; for (int i=0; i < 4; i++) { m = Math.min(m, coords[i][1]); } return m; } public Shape rotateLeft() { if (pieceShape == Tetrominoes.SquareShape) return this; Shape result = new Shape(); result.pieceShape = pieceShape; for (int i = 0; i < 4; ++i) { result.setX(i, y(i)); result.setY(i, -x(i)); } return result; } public Shape rotateRight() { if (pieceShape == Tetrominoes.SquareShape) return this; Shape result = new Shape(); result.pieceShape = pieceShape; for (int i = 0; i < 4; ++i) { result.setX(i, -y(i)); result.setY(i, x(i)); } return result; } }
The Shape
class provides information about a tetris piece.
enum Tetrominoes { NoShape, ZShape, SShape, LineShape, TShape, SquareShape, LShape, MirroredLShape };
The Tetrominoes enum holds all seven tetris shapes. Plus the empty shape called here NoShape
.
public Shape() { coords = new int[4][2]; setShape(Tetrominoes.NoShape); }
This is the constructor of the Shape
class. The coords
array holds the actual coordinates of a Tetris piece.
coordsTable = new int[][][] { { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, { { 0, -1 }, { 0, 0 }, { -1, 0 }, { -1, 1 } }, { { 0, -1 }, { 0, 0 }, { 1, 0 }, { 1, 1 } }, { { 0, -1 }, { 0, 0 }, { 0, 1 }, { 0, 2 } }, { { -1, 0 }, { 0, 0 }, { 1, 0 }, { 0, 1 } }, { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } }, { { -1, -1 }, { 0, -1 }, { 0, 0 }, { 0, 1 } }, { { 1, -1 }, { 0, -1 }, { 0, 0 }, { 0, 1 } } };
The coordsTable
array holds all possible coordinate values of our tetris pieces. This is a template from which all pieces take their coordiate values.
for (int i = 0; i < 4 ; i++) { for (int j = 0; j < 2; ++j) { coords[i][j] = coordsTable[shape.ordinal()][i][j]; } }
Here we put one row of the coordiate values from the coordsTable
to a coords array of a tetris piece. Note the use of the ordinal()
method. In C++, an enum type is esencially an integer. Unlike in C++, Java enums are full classes. And the ordinal()
method returns the current position of the enum type in the enum object.
The following image will help understand the coordinate values a bit more. The coords array saves the coordinates of the tetris piece. For example, numbers { 0, -1 }, { 0, 0 }, { -1, 0 }, { -1, 1 }, represent a rotated S-shape. The following diagram illustrates the shape.

public Shape rotateLeft() { if (pieceShape == Tetrominoes.SquareShape) return this; Shape result = new Shape(); result.pieceShape = pieceShape; for (int i = 0; i < 4; ++i) { result.setX(i, y(i)); result.setY(i, -x(i)); } return result; }
This code rotates the piece to the left. The square does not have to be rotated. That's why we simply return the reference to the current object. Looking at the previous image will help to understand the rotation.
Board.java
package tetris; import java.awt.Color; import java.awt.Dimension; import java.awt.Graphics; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.Timer; import tetris.Shape.Tetrominoes; public class Board extends JPanel implements ActionListener { final int BoardWidth = 10; final int BoardHeight = 22; Timer timer; boolean isFallingFinished = false; boolean isStarted = false; boolean isPaused = false; int numLinesRemoved = 0; int curX = 0; int curY = 0; JLabel statusbar; Shape curPiece; Tetrominoes[] board; public Board(Tetris parent) { setFocusable(true); curPiece = new Shape(); timer = new Timer(400, this); timer.start(); statusbar = parent.getStatusBar(); board = new Tetrominoes[BoardWidth * BoardHeight]; addKeyListener(new TAdapter()); clearBoard(); } public void actionPerformed(ActionEvent e) { if (isFallingFinished) { isFallingFinished = false; newPiece(); } else { oneLineDown(); } } int squareWidth() { return (int) getSize().getWidth() / BoardWidth; } int squareHeight() { return (int) getSize().getHeight() / BoardHeight; } Tetrominoes shapeAt(int x, int y) { return board[(y * BoardWidth) + x]; } public void start() { if (isPaused) return; isStarted = true; isFallingFinished = false; numLinesRemoved = 0; clearBoard(); newPiece(); timer.start(); } private void pause() { if (!isStarted) return; isPaused = !isPaused; if (isPaused) { timer.stop(); statusbar.setText("paused"); } else { timer.start(); statusbar.setText(String.valueOf(numLinesRemoved)); } repaint(); } public void paint(Graphics g) { super.paint(g); Dimension size = getSize(); int boardTop = (int) size.getHeight() - BoardHeight * squareHeight(); for (int i = 0; i < BoardHeight; ++i) { for (int j = 0; j < BoardWidth; ++j) { Tetrominoes shape = shapeAt(j, BoardHeight - i - 1); if (shape != Tetrominoes.NoShape) drawSquare(g, 0 + j * squareWidth(), boardTop + i * squareHeight(), shape); } } if (curPiece.getShape() != Tetrominoes.NoShape) { for (int i = 0; i < 4; ++i) { int x = curX + curPiece.x(i); int y = curY - curPiece.y(i); drawSquare(g, 0 + x * squareWidth(), boardTop + (BoardHeight - y - 1) * squareHeight(), curPiece.getShape()); } } } private void dropDown() { int newY = curY; while (newY > 0) { if (!tryMove(curPiece, curX, newY - 1)) break; --newY; } pieceDropped(); } private void oneLineDown() { if (!tryMove(curPiece, curX, curY - 1)) pieceDropped(); } private void clearBoard() { for (int i = 0; i < BoardHeight * BoardWidth; ++i) board[i] = Tetrominoes.NoShape; } private void pieceDropped() { for (int i = 0; i < 4; ++i) { int x = curX + curPiece.x(i); int y = curY - curPiece.y(i); board[(y * BoardWidth) + x] = curPiece.getShape(); } removeFullLines(); if (!isFallingFinished) newPiece(); } private void newPiece() { curPiece.setRandomShape(); curX = BoardWidth / 2 + 1; curY = BoardHeight - 1 + curPiece.minY(); if (!tryMove(curPiece, curX, curY)) { curPiece.setShape(Tetrominoes.NoShape); timer.stop(); isStarted = false; statusbar.setText("game over"); } } private boolean tryMove(Shape newPiece, int newX, int newY) { for (int i = 0; i < 4; ++i) { int x = newX + newPiece.x(i); int y = newY - newPiece.y(i); if (x < 0 || x >= BoardWidth || y < 0 || y >= BoardHeight) return false; if (shapeAt(x, y) != Tetrominoes.NoShape) return false; } curPiece = newPiece; curX = newX; curY = newY; repaint(); return true; } private void removeFullLines() { int numFullLines = 0; for (int i = BoardHeight - 1; i >= 0; --i) { boolean lineIsFull = true; for (int j = 0; j < BoardWidth; ++j) { if (shapeAt(j, i) == Tetrominoes.NoShape) { lineIsFull = false; break; } } if (lineIsFull) { ++numFullLines; for (int k = i; k < BoardHeight - 1; ++k) { for (int j = 0; j < BoardWidth; ++j) board[(k * BoardWidth) + j] = shapeAt(j, k + 1); } } } if (numFullLines > 0) { numLinesRemoved += numFullLines; statusbar.setText(String.valueOf(numLinesRemoved)); isFallingFinished = true; curPiece.setShape(Tetrominoes.NoShape); repaint(); } } private void drawSquare(Graphics g, int x, int y, Tetrominoes shape) { Color colors[] = { new Color(0, 0, 0), new Color(204, 102, 102), new Color(102, 204, 102), new Color(102, 102, 204), new Color(204, 204, 102), new Color(204, 102, 204), new Color(102, 204, 204), new Color(218, 170, 0) }; Color color = colors[shape.ordinal()]; g.setColor(color); g.fillRect(x + 1, y + 1, squareWidth() - 2, squareHeight() - 2); g.setColor(color.brighter()); g.drawLine(x, y + squareHeight() - 1, x, y); g.drawLine(x, y, x + squareWidth() - 1, y); g.setColor(color.darker()); g.drawLine(x + 1, y + squareHeight() - 1, x + squareWidth() - 1, y + squareHeight() - 1); g.drawLine(x + squareWidth() - 1, y + squareHeight() - 1, x + squareWidth() - 1, y + 1); } class TAdapter extends KeyAdapter { public void keyPressed(KeyEvent e) { if (!isStarted || curPiece.getShape() == Tetrominoes.NoShape) { return; } int keycode = e.getKeyCode(); if (keycode == 'p' || keycode == 'P') { pause(); return; } if (isPaused) return; switch (keycode) { case KeyEvent.VK_LEFT: tryMove(curPiece, curX - 1, curY); break; case KeyEvent.VK_RIGHT: tryMove(curPiece, curX + 1, curY); break; case KeyEvent.VK_DOWN: tryMove(curPiece.rotateRight(), curX, curY); break; case KeyEvent.VK_UP: tryMove(curPiece.rotateLeft(), curX, curY); break; case KeyEvent.VK_SPACE: dropDown(); break; case 'd': oneLineDown(); break; case 'D': oneLineDown(); break; } } } }
Finally, we have the Board.java
file. This is where the game logic is located.
... isFallingFinished = false; isStarted = false; isPaused = false; numLinesRemoved = 0; curX = 0; curY = 0; ...
We initialize some important variables. The isFallingFinished
variable determines if the tetris shape has finished falling and we then need to create a new shape. The numLinesRemoved
counts the number of lines we have removed so far. The curX
and curY
variables determine the actual position of the falling tetris shape.
setFocusable(true);
We must explicitly call the setFocusable()
method. From now, the board has the keyboard input.
timer = new Timer(400, this); timer.start();
Timer object fires one or more action events after a specified delay. In our case, the timer calls the actionPerformed()
method each 400 ms.
public void actionPerformed(ActionEvent e) { if (isFallingFinished) { isFallingFinished = false; newPiece(); } else { oneLineDown(); } }
The actionPerformed()
method checks if the falling has finished. If so, a new piece is created. If not, the falling tetris piece goes one line down.
Inside the paint()
method, we draw the all objects on the board. The painting has two steps.
for (int i = 0; i < BoardHeight; ++i) { for (int j = 0; j < BoardWidth; ++j) { Tetrominoes shape = shapeAt(j, BoardHeight - i - 1); if (shape != Tetrominoes.NoShape) drawSquare(g, 0 + j * squareWidth(), boardTop + i * squareHeight(), shape); } }
In the first step we paint all the shapes, or remains of the shapes that have been dropped to the bottom of the board. All the squares are rememberd in the board array. We access it using the shapeAt()
method.
if (curPiece.getShape() != Tetrominoes.NoShape) { for (int i = 0; i < 4; ++i) { int x = curX + curPiece.x(i); int y = curY - curPiece.y(i); drawSquare(g, 0 + x * squareWidth(), boardTop + (BoardHeight - y - 1) * squareHeight(), curPiece.getShape()); } }
In the second step, we paint the actual falling piece.
private void dropDown() { int newY = curY; while (newY > 0) { if (!tryMove(curPiece, curX, newY - 1)) break; --newY; } pieceDropped(); }
If we press the space key, the piece is dropped to the bottom. We simply try to drop the piece one line down until it reaches the bottom or the top of another fallen tetris piece.
private void clearBoard() { for (int i = 0; i < BoardHeight * BoardWidth; ++i) board[i] = Tetrominoes.NoShape; }
The clearBoard()
method fills the board with empty NoSpapes
. This is later used at collision detection.
private void pieceDropped() { for (int i = 0; i < 4; ++i) { int x = curX + curPiece.x(i); int y = curY - curPiece.y(i); board[(y * BoardWidth) + x] = curPiece.getShape(); } removeFullLines(); if (!isFallingFinished) newPiece(); }
The pieceDropped()
method puts the falling piece into the board
array. Once again, the board holds all the squares of the pieces and remains of the pieces that has finished falling. When the piece has finished falling, it is time to check if we can remove some lines off the board. This is the job of the removeFullLines()
method. Then we create a new piece. More precisely, we try to create a new piece.
private void newPiece() { curPiece.setRandomShape(); curX = BoardWidth / 2 + 1; curY = BoardHeight - 1 + curPiece.minY(); if (!tryMove(curPiece, curX, curY)) { curPiece.setShape(Tetrominoes.NoShape); timer.stop(); isStarted = false; statusbar.setText("game over"); } }
The newPiece()
method creates a new tetris piece. The piece gets a new random shape. Then we compute the initial curX
and curY
values. If we cannot move to the initial positions, the game is over. We top out. The timer is stopped. We put game over string on the statusbar.
private boolean tryMove(Shape newPiece, int newX, int newY) { for (int i = 0; i < 4; ++i) { int x = newX + newPiece.x(i); int y = newY - newPiece.y(i); if (x < 0 || x >= BoardWidth || y < 0 || y >= BoardHeight) return false; if (shapeAt(x, y) != Tetrominoes.NoShape) return false; } curPiece = newPiece; curX = newX; curY = newY; repaint(); return true; }
The tryMove()
method tries to move the tetris piece. The method returns false if it has reached the board boundaries or it is adjacent to the already fallen tetris pieces.
for (int i = BoardHeight - 1; i >= 0; --i) { boolean lineIsFull = true; for (int j = 0; j < BoardWidth; ++j) { if (shapeAt(j, i) == Tetrominoes.NoShape) { lineIsFull = false; break; } } if (lineIsFull) { ++numFullLines; for (int k = i; k < BoardHeight - 1; ++k) { for (int j = 0; j < BoardWidth; ++j) board[(k * BoardWidth) + j] = shapeAt(j, k + 1); } } }
Inside the removeFullLines()
method, we check if there is any full row among all rows in the board
. If there is at least one full line, it is removed. After finding a full line we increase the counter. We move all the lines above the full row one line down. This way we destroy the full line. Notice that in our Tetris game, we use so called naive gravity. This means that the squares may be left floating above empty gaps.
Every tetris piece has four squares. Each of the squares is drawn with the drawSquare()
method. Tetris pieces have different colours.
g.setColor(color.brighter()); g.drawLine(x, y + squareHeight() - 1, x, y); g.drawLine(x, y, x + squareWidth() - 1, y);
The left and top sides of a square are drawn with a brighter colour. Similarly, the bottom and right sides are drawn with darker colours. This is to simulate a 3D edge.
We control the game with a keyboard. The control mechanism is implemented with a KeyAdapter
. This is an inner class that overrides the keyPressed()
method.
case KeyEvent.VK_RIGHT: tryMove(curPiece, curX + 1, curY); break;
If we pressed the left arrow key, we try to move the falling piece one square to the left.

This was the Tetris game.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论