- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
Problem A. Farthest Point
Source
Problem
时间限制:5000ms
单点时限:1000ms
内存限制:256MB
描述
Given a circle on a two-dimentional plane.
Output the integral point in or on the boundary of the circle which has the largest distance from the center.
输入
One line with three floats which are all accurate to three decimal places, indicating the coordinates of the center x, y and the radius r.
For 80% of the data: |x|,|y|<=1000, 1<=r<=1000
For 100% of the data: |x|,|y|<=100000, 1<=r<=100000
输出
One line with two integers separated by one space, indicating the answer.
If there are multiple answers, print the one with the largest x-coordinate.
If there are still multiple answers, print the one with the largest y-coordinate.
样例输入
1.000 1.000 5.000
样例输出
6 1
题解 1 - 圆周枚举
其实自己最开始做这道题时用的就是枚举,但是似乎忘记加圆心坐标了,一直 WA... 题目要求是返回最大的 x, 所以我们首先根据半径范围将 x 的整数解范围求出来。然后求出可能的 y, 由于题中给出的解有 3 位小数,如果要精确求解的话,可以将圆方程两边同乘 1000,然后判断是否为整数。
Java
import java.io.*;
import java.util.*;
import java.util.Queue;
class Point {
long x;
long y;
Point(long x, long y) {
this.x = x;
this.y = y;
}
}
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
double xd = in.nextDouble(), yd = in.nextDouble(), rd = in.nextDouble();
Point result = solve(xd, yd, rd);
System.out.println(result.x + " " + result.y);
}
private static Point solve(double x0, double y0, double r) {
// convert double to long(accurate)
long xl0 = (long)(x0 * 1000), yl0 = (long)(y0 * 1000), rl0 = (long)(r * 1000);
Point res = new Point(Long.MIN_VALUE, Long.MIN_VALUE);
int lower_x = (int)Math.ceil(x0 - r), upper_x = (int)Math.floor(x0 + r);
for (int i = upper_x; i >= lower_x; i--) {
// circle above
long y1l = yl0 + (long)(Math.sqrt(rl0*rl0 - (i*1000 - xl0)*(i*1000 - xl0)) + 0.5);
if ((i*1000 - xl0)*(i*1000 - xl0) + (y1l - yl0)*(y1l - yl0) == rl0*rl0) {
// ensure y1 is integer
if (y1l % 1000 == 0) {
res.x = i;
res.y = y1l / 1000;
return res;
}
}
// circle below
y1l = yl0 - (long)(Math.sqrt(rl0*rl0 - (i*1000 - xl0)*(i*1000 - xl0)) + 0.5);
if ((i*1000 - xl0)*(i*1000 - xl0) + (y1l - yl0)*(y1l - yl0) == rl0*rl0) {
// ensure y1 is integer
if (y1l % 1000 == 0) {
res.x = i;
res.y = y1l / 1000;
return res;
}
}
}
return res;
}
}
源码分析
自右向左枚举,先枚举圆的上半部分,再枚举圆的下半部分。注意 1000 的转换。
复杂度分析
最坏情况下 O(R)O(R)O(R).
题解 2 - 整数分解
看似容易实则比较难的一道题,现场通过率非常低。我们仔细审下题,求圆周上的整点,有多个整点时输出最大的 x 和最大的 y. 容易想到的方案是枚举所有可能的 x 和 y, 然后代入等式测试是否相等,这个过不了大的 x 和 y. 如果用开方的方法必然有误差,我用这种方法不知道贡献了多少 WA, 泪流满面... 作为在线测试, 更为合理的方案应为先暴力搜索拿到百分之八十的分数。
从 Microsoft 和 Google APAC 在线测试的风格来看是偏向于程序设计竞赛的,那么题目的考点自然就在竞赛范围之内,这道题看似是浮点型的数据,实际上考的却是整数中数论的基础。注意题中的 accurate to three decimal places, 那么也就意味着我们对给定的数据同乘 10310^3103 后一定是整数!! !这个关键的信息我在测试过程中也没注意到,直到第二天早上醒来后突然就想到了!兴奋地六点多就爬起来了。
首先肯定是要写出圆方程的,设圆心坐标为 (x0,y0)(x_0, y_0)(x0,y0), 半径为 rrr, 那么我们有: (x−x0)2+(y−y0)2=r2 (x - x_0)^2 + (y - y_0)^2 = r^2 (x−x0)2+(y−y0)2=r2
设 m=103(x−x0)m = 10^3(x - x_0)m=103(x−x0), n=103(y−y0)n = 10^3(y - y_0)n=103(y−y0), R=103rR = 10^3rR=103r, 那么我们有新的圆方程: m2+n2=R2 m^2 + n^2 = R^2 m2+n2=R2 其中 m, n, R
均为整数。接下来我们看看给出的数据范围,x, y, r 均是 10610^6106 以内,那么圆方程两边同乘 10610^6106 (括号内的数即乘上 10310^3103)后数据在 101810^{18}1018 以内。我们来估算下整数的范围,210≈1032^{10} \approx 10^3210≈103, Java 中 int 型为 4 个字节,最大为 231−1≈2⋅1092^{31} - 1 \approx 2 \cdot 10^9231−1≈2⋅109, long 型为 8 个字节,最大为 263−1≈23⋅10182^{63} - 1 \approx 2^3 \cdot 10^{18}263−1≈23⋅1018, 估算下来应该选用 long 保存 m, n, R.
接下来就是数论部分的推导了,先来一个简单的推导,勾股数部分的推导不直观。首先从已知部分出发,已知的只有勾股数方程和 m, n 均是整数,那么接下来肯定是要利用整数的理论无疑了。我们首先对以上圆方程移项开方,考虑到圆的对称性,我们其实只需要考虑圆的八分之一即可。这里考虑 0 < m < r
部分, m == 0
表示在点在轴上,最后单独加上。
m=R2−n2=(R+n)(R−n) m = \sqrt{R^2 - n^2} = \sqrt{(R + n)(R - n)} m=√R2−n2=√(R+n)(R−n) 由于 m 一定是整数,故根号内一定为完全平方数,由于排除了轴上的点,那么 -R < n < R
, 设 G = gcd(R + n, R - n)
, p2=(R+n)/Gp^2 = (R + n) / Gp2=(R+n)/G, q2=(R−n)/Gq^2 = (R - n) / Gq2=(R−n)/G, 于是我们有 m = Gpq
, p > q
, 由于 G
是 R + n
和 R - n
的最大公约数,故 p
和 q
一定互质,且有: p2+q2=2R/G p^2 + q^2 = 2R / G p2+q2=2R/G 由于 p
, q
都大于等于 1,那么我们能推断出 G
一定是 2R
的约数!根据约数(素数) 部分的基础理论,我们可以在 O(2R)O(\sqrt{2R})O(√2R) 时间内找出所有约数。然后对以上等式进行缩放得到 p
的范围,枚举求解,判断 p^2
和 q^2
是否互质(最大公约数是否为 1)。
Java
import java.io.*;
import java.util.*;
class Point {
long x;
long y;
Point(long x, long y) {
this.x = x;
this.y = y;
}
}
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
double xd = in.nextDouble(), yd = in.nextDouble(), rd = in.nextDouble();
// convert double to long(accurate)
long x0 = (long)(xd * 1000), y0 = (long)(yd * 1000), r0 = (long)(rd * 1000);
Point result = solve(x0, y0, r0);
System.out.println(result.x + " " + result.y);
}
private static Point solve(long x0, long y0, long r) {
Point res = new Point(Long.MIN_VALUE, Long.MIN_VALUE);
long x_max = Long.MIN_VALUE, y_max = Long.MIN_VALUE;
// p^2 + q^2 = 2R/divisor, p > q >= 1
// 1 <= q^2 < R/G < p^2 < 2R/G ==> p >= 2
List<Long> divisors = getDivisor(r << 1);
for (long divisor : divisors) {
long lower = Math.max(2, (long)Math.sqrt(r * 1.0/ divisor));
// long upper = (long)Math.sqrt(2.0 * r / divisor);
for (long p = lower; p * p <= 2 * r / divisor; p++) {
long q = (long)Math.sqrt(2.0 * r / divisor - p * p);
// check if q is integer
if (p * p + q * q != 2 * r / divisor) continue;
// ensure p^2 and q^2 have no common divisor
if (gcd(p * p, q * q) == 1) {
long m = divisor * p * q;
long n = r - p * p * divisor;
List<Point> points = new ArrayList<Point>();
points.add(new Point(m + x0, n + y0));
points.add(new Point(m + x0, -1 * n + y0));
points.add(new Point(-1 * m + x0, n + y0));
points.add(new Point(-1 * m + x0, -1 * n + y0));
for (Point point : points) {
updateAns(point, res);
}
}
}
}
// axis point check
List<Point> axis = new ArrayList<Point>();
axis.add(new Point(x0 + r, y0));
axis.add(new Point(x0 - r, y0));
axis.add(new Point(x0, y0 + r));
axis.add(new Point(x0, y0 - r));
for (Point point : axis) {
updateAns(point, res);
}
// divide by 1000
res.x /= 1000;
res.y /= 1000;
return res;
}
public static void updateAns(Point p, Point res) {
// point(x, y) in integer
if ((p.x % 1000 == 0) && (p.y % 1000 == 0)) {
if (p.x > res.x) {
res.x = p.x;
res.y = p.y;
} else if (p.x == res.x && p.y > res.y) {
res.y = p.y;
}
}
}
// enumerate all the divisor for n
public static List<Long> getDivisor(long n) {
List<Long> result = new ArrayList<Long>();
for (long i = 1; i * i <= n; i++) {
if (n % i == 0) {
result.add(i);
// i * i <= n ==> i <= n / i
if (i != n / i) result.add(n / i);
}
}
Collections.sort(result);
return result;
}
public static long gcd(long a, long b) {
return (b == 0L) ? a : gcd(b, a % b);
}
}
源码分析
由于更新结果的操作非常频繁,单独写一个方法较好。
复杂度分析
求所有素数时间复杂度 O(n)O(\sqrt{n})O(√n), 判断是否互质时间复杂度 O(logn)O(\log n)O(logn). 枚举最大公约数时间复杂度约 (n)(\sqrt{n})(√n),总的时间复杂度估算应该比 O(n)O(n)O(n) 小一些,但是小的不明显。 所以说,这种方法费了老大劲,但是吃力不讨好!笔试中这种方法极不可取!
题解 3 - 勾股数
除了以上使用数论部分整数分解的方法外,还可以巧用勾股数的特性,这种方法需要熟知勾股数的特性。设正整数 m,n,rm, n, rm,n,r 满足: m2+n2=r2 m^2 + n^2 = r^2 m2+n2=r2 我们对上式两边进行平方可得: (m2−n2)2+(2mn)2=(m2+n2)2=(r2)2 (m^2 - n^2)^2 + (2mn)^2 = (m^2 + n^2)^2 = (r^2)^2 (m2−n2)2+(2mn)2=(m2+n2)2=(r2)2 令 a=m2−n2a = m^2 - n^2a=m2−n2, b=2mnb = 2mnb=2mn, c=m2+n2c = m^2 + n^2c=m2+n2. 容易得到: a2+b2=c2 a^2 + b^2 = c^2 a2+b2=c2 注意到上述推导可逆,那么也就是说只要我们找到正整数满足 m > n
就能找到所有可能的勾股数。且根据素勾股数的特性, m
, n
为一奇一偶,不妨设其为 2k-1
, 2k
. 代入 c
中可知 c
为 4K + 1
. 即 c % 4 = 1
. 根据 Tree of primitive Pythagorean triples 中提到的方法,我们只需找出小于给定的 r
的素勾股数即可,然后判断是否能整除 r
.
Java
import java.io.*;
import java.util.*;
import java.util.Queue;
class Point {
long x;
long y;
Point(long x, long y) {
this.x = x;
this.y = y;
}
}
class Pythagorean {
long x;
long y;
long z;
Pythagorean(long x, long y, long z) {
this.x = x;
this.y = y;
this.z = z;
}
}
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
double xd = in.nextDouble(), yd = in.nextDouble(), rd = in.nextDouble();
// convert double to long(accurate)
long x0 = (long)(xd * 1000), y0 = (long)(yd * 1000), r0 = (long)(rd * 1000);
Point result = solve(x0, y0, r0);
System.out.println(result.x + " " + result.y);
}
private static Point solve(long x0, long y0, long r) {
Point res = new Point(Long.MIN_VALUE, Long.MIN_VALUE);
long x_max = Long.MIN_VALUE, y_max = Long.MIN_VALUE;
// init
Pythagorean pyth0 = new Pythagorean(3, 4, 5);
Queue<Pythagorean> q = new LinkedList<Pythagorean>();
q.offer(pyth0);
boolean update = true;
while (!q.isEmpty()) {
int qSize = q.size();
for (int i = 0; i < qSize; i++) {
Pythagorean pyth = q.poll();
if ((r % pyth.z) == 0) {
// System.out.println("x = " + pyth.x + ", y = " + pyth.y + ", r = " + pyth.z);
long k = r / pyth.z;
long kx = k * pyth.x;
long ky = k * pyth.y;
List<Point> points = new ArrayList<Point>();
points.add(new Point(x0 + kx, y0 + ky));
points.add(new Point(x0 - kx, y0 + ky));
points.add(new Point(x0 + kx, y0 - ky));
points.add(new Point(x0 - kx, y0 - ky));
if (kx != ky) {
points.add(new Point(y0 + ky, x0 + kx));
points.add(new Point(y0 - ky, x0 + kx));
points.add(new Point(y0 + ky, x0 - kx));
points.add(new Point(y0 - ky, x0 - kx));
}
for (Point point : points) {
updateAns(point, res);
}
}
// add next level Pythagorean
for (Pythagorean p : nextPyths(pyth)) {
if (p.z > r) continue;
q.offer(p);
}
}
}
// axis point check
List<Point> axis = new ArrayList<Point>();
axis.add(new Point(x0 + r, y0));
axis.add(new Point(x0 - r, y0));
axis.add(new Point(x0, y0 + r));
axis.add(new Point(x0, y0 - r));
for (Point point : axis) {
updateAns(point, res);
}
// divide by 1000
res.x /= 1000;
res.y /= 1000;
return res;
}
public static List<Pythagorean> nextPyths(Pythagorean pyth) {
List<Pythagorean> pyths = new ArrayList<Pythagorean>();
// method 1
Pythagorean pyth1 = new Pythagorean(0, 0, 0);
pyth1.x = pyth.x - 2 * pyth.y + 2 * pyth.z;
pyth1.y = 2 * pyth.x - 1 * pyth.y + 2 * pyth.z;
pyth1.z = 2 * pyth.x - 2 * pyth.y + 3 * pyth.z;
pyths.add(pyth1);
// method 2
Pythagorean pyth2 = new Pythagorean(0, 0, 0);
pyth2.x = pyth.x + 2 * pyth.y + 2 * pyth.z;
pyth2.y = 2 * pyth.x + 1 * pyth.y + 2 * pyth.z;
pyth2.z = 2 * pyth.x + 2 * pyth.y + 3 * pyth.z;
pyths.add(pyth2);
// method 3
Pythagorean pyth3 = new Pythagorean(0, 0, 0);
pyth3.x = -1 * pyth.x + 2 * pyth.y + 2 * pyth.z;
pyth3.y = -2 * pyth.x + pyth.y + 2 * pyth.z;
pyth3.z = -2 * pyth.x + 2 * pyth.y + 3 * pyth.z;
pyths.add(pyth3);
return pyths;
}
public static void updateAns(Point p, Point res) {
// point(x, y) in integer
if ((p.x % 1000 == 0) && (p.y % 1000 == 0)) {
if (p.x > res.x) {
res.x = p.x;
res.y = p.y;
} else if (p.x == res.x && p.y > res.y) {
res.y = p.y;
}
}
}
}
源码分析
根据链接中提到的数据结构,使用队列按层次遍历较好,但是空间消耗较大,所以在入队时一定要剪枝。
复杂度分析
时间复杂度最坏情况下需要遍历所有可能素勾股数。空间复杂度消耗也比较客观...
Reference
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论