返回介绍

第11章 实践方法论

发布于 2024-01-20 12:27:18 字数 815 浏览 0 评论 0 收藏 0

要成功地使用深度学习技术,仅仅知道存在哪些算法和解释它们为何有效的原理是不够的。一个优秀的机器学习实践者还需要知道如何针对具体应用挑选一个合适的算法以及如何监控,并根据实验反馈改进机器学习系统。在机器学习系统的日常开发中,实践者需要决定是否收集更多的数据、增加或减少模型容量、添加或删除正则化项、改进模型的优化、改进模型的近似推断或调试模型的软件实现。尝试这些操作都需要大量时间,因此确定正确的做法,而不盲目猜测尤为重要。

本书的大部分内容都是关于不同的机器学习模型、训练算法和目标函数,这可能给人一种印象——成为机器学习专家的最重要因素是了解各种各样的机器学习技术,并熟悉各种不同的数学。在实践中,正确使用一个普通算法通常比草率地使用一个不清楚的算法效果更好。正确应用一个算法需要掌握一些相当简单的方法论。本章的许多建议都来自Ng(2015)。

我们建议参考以下几个实践设计流程:

确定目标——使用什么样的误差度量,并为此误差度量指定目标值。这些目标和误差度量取决于该应用旨在解决的问题。

尽快建立一个端到端的工作流程,包括估计合适的性能度量。

搭建系统,并确定性能瓶颈。检查哪个部分的性能差于预期,以及是否是因为过拟合、欠拟合,或者数据或软件缺陷造成的。

根据具体观察反复地进行增量式的改动,如收集新数据、调整超参数或改进算法。

我们将使用街景地址号码转录系统(Goodfellow et al.,2014d)作为一个运行示例。该应用的目标是将建筑物添加到谷歌地图。街景车拍摄建筑物,并记录与每张建筑照片相关的GPS坐标。卷积网络识别每张照片上的地址号码,由谷歌地图数据库在正确的位置添加该地址。这个商业应用是一个很好的示例,它的开发流程遵循我们倡导的设计方法。

我们现在描述这个过程中的每一个步骤。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文