返回介绍

solution / 0900-0999 / 0970.Powerful Integers / README_EN

发布于 2024-06-17 01:03:32 字数 5403 浏览 0 评论 0 收藏 0

970. Powerful Integers

中文文档

Description

Given three integers x, y, and bound, return _a list of all the powerful integers that have a value less than or equal to_ bound.

An integer is powerful if it can be represented as xi + yj for some integers i >= 0 and j >= 0.

You may return the answer in any order. In your answer, each value should occur at most once.

 

Example 1:

Input: x = 2, y = 3, bound = 10
Output: [2,3,4,5,7,9,10]
Explanation:
2 = 20 + 30
3 = 21 + 30
4 = 20 + 31
5 = 21 + 31
7 = 22 + 31
9 = 23 + 30
10 = 20 + 32

Example 2:

Input: x = 3, y = 5, bound = 15
Output: [2,4,6,8,10,14]

 

Constraints:

  • 1 <= x, y <= 100
  • 0 <= bound <= 106

Solutions

Solution 1: Hash Table + Enumeration

According to the description of the problem, a powerful integer can be represented as $x^i + y^j$, where $i \geq 0$, $j \geq 0$.

The problem requires us to find all powerful integers that do not exceed $bound$. We notice that the value range of $bound$ does not exceed $10^6$, and $2^{20} = 1048576 \gt 10^6$. Therefore, if $x \geq 2$, then $i$ is at most $20$ to make $x^i + y^j \leq bound$ hold. Similarly, if $y \geq 2$, then $j$ is at most $20$.

Therefore, we can use double loop to enumerate all possible $x^i$ and $y^j$, denoted as $a$ and $b$ respectively, and ensure that $a + b \leq bound$, then $a + b$ is a powerful integer. We use a hash table to store all powerful integers that meet the conditions, and finally convert all elements in the hash table into the answer list and return it.

Note that if $x=1$ or $y=1$, then the value of $a$ or $b$ is always equal to $1$, and the corresponding loop only needs to be executed once to exit.

The time complexity is $O(\log^2 bound)$, and the space complexity is $O(\log^2 bound)$.

class Solution:
  def powerfulIntegers(self, x: int, y: int, bound: int) -> List[int]:
    ans = set()
    a = 1
    while a <= bound:
      b = 1
      while a + b <= bound:
        ans.add(a + b)
        b *= y
        if y == 1:
          break
      if x == 1:
        break
      a *= x
    return list(ans)
class Solution {
  public List<Integer> powerfulIntegers(int x, int y, int bound) {
    Set<Integer> ans = new HashSet<>();
    for (int a = 1; a <= bound; a *= x) {
      for (int b = 1; a + b <= bound; b *= y) {
        ans.add(a + b);
        if (y == 1) {
          break;
        }
      }
      if (x == 1) {
        break;
      }
    }
    return new ArrayList<>(ans);
  }
}
class Solution {
public:
  vector<int> powerfulIntegers(int x, int y, int bound) {
    unordered_set<int> ans;
    for (int a = 1; a <= bound; a *= x) {
      for (int b = 1; a + b <= bound; b *= y) {
        ans.insert(a + b);
        if (y == 1) {
          break;
        }
      }
      if (x == 1) {
        break;
      }
    }
    return vector<int>(ans.begin(), ans.end());
  }
};
func powerfulIntegers(x int, y int, bound int) (ans []int) {
  s := map[int]struct{}{}
  for a := 1; a <= bound; a *= x {
    for b := 1; a+b <= bound; b *= y {
      s[a+b] = struct{}{}
      if y == 1 {
        break
      }
    }
    if x == 1 {
      break
    }
  }
  for x := range s {
    ans = append(ans, x)
  }
  return ans
}
function powerfulIntegers(x: number, y: number, bound: number): number[] {
  const ans = new Set<number>();
  for (let a = 1; a <= bound; a *= x) {
    for (let b = 1; a + b <= bound; b *= y) {
      ans.add(a + b);
      if (y === 1) {
        break;
      }
    }
    if (x === 1) {
      break;
    }
  }
  return Array.from(ans);
}
/**
 * @param {number} x
 * @param {number} y
 * @param {number} bound
 * @return {number[]}
 */
var powerfulIntegers = function (x, y, bound) {
  const ans = new Set();
  for (let a = 1; a <= bound; a *= x) {
    for (let b = 1; a + b <= bound; b *= y) {
      ans.add(a + b);
      if (y === 1) {
        break;
      }
    }
    if (x === 1) {
      break;
    }
  }
  return [...ans];
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文