- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
接口使用示例 - 增删改查操作
增删改查是数据库的基础操作方法。ES 虽然不是数据库,但是很多场合下,都被人们当做一个文档型 NoSQL 数据库在使用,原因自然是因为在接口和分布式架构层面的相似性。虽然在 Elastic Stack 场景下,数据的写入和查询,分别由 Logstash 和 Kibana 代劳,作为测试、调研和排错时的基本功,还是需要了解一下 ES 的增删改查用法的。
数据写入
ES 的一大特点,就是全 RESTful 接口处理 JSON 请求。所以,数据写入非常简单:
# curl -XPOST http://127.0.0.1:9200/logstash-2015.06.21/testlog -d '{
"date" : "1434966686000",
"user" : "chenlin7",
"mesg" : "first message into Elasticsearch"
}'
命令返回响应结果为:
{"_index":"logstash-2015.06.21","_type":"testlog","_id":"AU4ew3h2nBE6n0qcyVJK","_version":1,"created":true}
数据获取
可以看到,在数据写入的时候,会返回该数据的 _id
。这就是后续用来获取数据的关键:
# curl -XGET http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK
命令返回响应结果为:
{"_index":"logstash-2015.06.21","_type":"testlog","_id":"AU4ew3h2nBE6n0qcyVJK","_version":1,"found":true,"_source":{
"date" : "1434966686000",
"user" : "chenlin7",
"mesg" : "first message into Elasticsearch"
}}
这个 _source
里的内容,正是之前写入的数据。
如果觉得这个返回看起来有点太过麻烦,可以使用 curl -XGET http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK/_source
来指明只获取源数据部分。
更进一步的,如果你只想看数据中的一部分字段内容,可以使用 curl -XGET http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK?fields=user,mesg
来指明获取字段,结果如下:
{"_index":"logstash-2015.06.21","_type":"testlog","_id":"AU4ew3h2nBE6n0qcyVJK","_version":1,"found":true,"fields":{"user":["chenlin7"],"mesg":["first message into Elasticsearch"]}}
数据删除
要删除数据,修改发送的 HTTP 请求方法为 DELETE 即可:
# curl -XDELETE http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK
删除不单针对单条数据,还可以删除整个整个索引。甚至可以用通配符。
# curl -XDELETE http://127.0.0.1:9200/logstash-2015.06.0*
在 Elasticsearch 2.x 之前,可以通过查询语句删除,也可以删除某个 _type
内的数据。现在都已经不再内置支持,改为 Delete by Query
插件。因为这种方式本身对性能影响较大!
数据更新
已经写过的数据,同样还是可以修改的。有两种办法,一种是全量提交,即指明 _id
再发送一次写入请求。
# curl -XPOST http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK -d '{
"date" : "1434966686000",
"user" : "chenlin7",
"mesg" " "first message into Elasticsearch but version 2"
}'
另一种是局部更新,使用 /_update
接口:
# curl -XPOST 'http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK/_update' -d '{
"doc" : {
"user" : "someone"
}
}'
或者
# curl -XPOST 'http://127.0.0.1:9200/logstash-2015.06.21/testlog/AU4ew3h2nBE6n0qcyVJK/_update' -d '{
"script" : "ctx._source.user = "someone""
}'
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论