Redis 源码分析 Redis 真的不是单线程 后台 IO 服务 BIO
面试总喜欢被问 Redis 是单线程还是多线程,千篇一律的回答单线程却不知所以然,严格来说 Redis 是多线程多进程、单线程处理请求,本文说的就是多线程下的 BIO(Background I/O service)。
由于 redis 单线程处理请求,所以某些耗时的操作被作为异步任务,有三种任务分别是:关闭文件、AOF 同步磁盘、释放空间。
/* Background job opcodes */
#define BIO_CLOSE_FILE 0 // close(),重写aof,会关闭旧文件fd,具体实现可参考aof.c的backgroundRewriteDoneHandler()
#define BIO_AOF_FSYNC 1 // fsync()
#define BIO_LAZY_FREE 2 // 延迟释放
#define BIO_NUM_OPS 3
每种任务类型都有独立的队列、执行线程、互斥锁,每个任务执行完成并不会 callback 通知调用方。
static pthread_t bio_threads[BIO_NUM_OPS];
static pthread_mutex_t bio_mutex[BIO_NUM_OPS];
static pthread_cond_t bio_newjob_cond[BIO_NUM_OPS];
static pthread_cond_t bio_step_cond[BIO_NUM_OPS];
static list *bio_jobs[BIO_NUM_OPS];
// 用于记录每个任务类型的任务数,假如主线程有与BIO共享的数据时,在主线程操作前,会等待直到队列不会有新的任务
// 通常在aof同步以及延迟释放会用到
static unsigned long long bio_pending[BIO_NUM_OPS];
/* This structure represents a background Job. It is only used locally to this
* file as the API does not expose the internals at all. */
struct bio_job {
time_t time; /* Time at which the job was created. */
// 多于三个参数可以传递指针or结构体
void *arg1, *arg2, *arg3;
};
void *bioProcessBackgroundJobs(void *arg);
// 下面三个方法实现均在lazyfree.c
void lazyfreeFreeObjectFromBioThread(robj *o);
void lazyfreeFreeDatabaseFromBioThread(dict *ht1, dict *ht2);
void lazyfreeFreeSlotsMapFromBioThread(zskiplist *sl);
/* Make sure we have enough stack to perform all the things we do in the
* main thread. */
#define REDIS_THREAD_STACK_SIZE (1024*1024*4)
// 在server.c中InitServerLast()调用
void bioInit(void) {
pthread_attr_t attr;
pthread_t thread;
size_t stacksize;
int j;
/* Initialization of state vars and objects */
for (j = 0; j < BIO_NUM_OPS; j++) {
pthread_mutex_init(&bio_mutex[j],NULL);
pthread_cond_init(&bio_newjob_cond[j],NULL);
pthread_cond_init(&bio_step_cond[j],NULL);
bio_jobs[j] = listCreate();
bio_pending[j] = 0;
}
pthread_attr_init(&attr);
pthread_attr_getstacksize(&attr,&stacksize);
if (!stacksize) stacksize = 1; // 不废话,至少4MB
while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
pthread_attr_setstacksize(&attr, stacksize);
// just do it
for (j = 0; j < BIO_NUM_OPS; j++) {
void *arg = (void*)(unsigned long) j;
if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) {
serverLog(LL_WARNING,"Fatal: Can't initialize Background Jobs.");
exit(1);
}
bio_threads[j] = thread;
}
}
void bioCreateBackgroundJob(int type, void *arg1, void *arg2, void *arg3) {
struct bio_job *job = zmalloc(sizeof(*job));
// 省略
}
// 任务线程主体
void *bioProcessBackgroundJobs(void *arg) {
struct bio_job *job;
unsigned long type = (unsigned long) arg;
sigset_t sigset;
/* Check that the type is within the right interval. */
if (type >= BIO_NUM_OPS) {
serverLog(LL_WARNING,
"Warning: bio thread started with wrong type %lu",type);
return NULL;
}
// 响应bioKillThreads的调用
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); // 意味着线程收到终止信号时,会立即取消
pthread_mutex_lock(&bio_mutex[type]);
// 屏蔽SIGALRM定时器信号
sigemptyset(&sigset);
sigaddset(&sigset, SIGALRM);
if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
serverLog(LL_WARNING,
"Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));
while(1) {
listNode *ln;
// 队列没有任务会一直hold着
if (listLength(bio_jobs[type]) == 0) {
pthread_cond_wait(&bio_newjob_cond[type],&bio_mutex[type]);
continue;
}
/* Pop the job from the queue. */
ln = listFirst(bio_jobs[type]);
job = ln->value;
// 成功取出任务,则可以释放锁
pthread_mutex_unlock(&bio_mutex[type]);
/* Process the job accordingly to its type. */
if (type == BIO_CLOSE_FILE) {
close((long)job->arg1);
} else if (type == BIO_AOF_FSYNC) {
redis_fsync((long)job->arg1); // syscall fsync
} else if (type == BIO_LAZY_FREE) {
// 原注解意思,
// arg1为要释放的对象指针
// arg2、arg3为要释放的redis db指针
// arg3则是个跳表
if (job->arg1)
lazyfreeFreeObjectFromBioThread(job->arg1); // 具体参数见:freeObjAsync
else if (job->arg2 && job->arg3)
lazyfreeFreeDatabaseFromBioThread(job->arg2,job->arg3); // 具体参数见:emptyDbAsync
else if (job->arg3)
lazyfreeFreeSlotsMapFromBioThread(job->arg3); // 具体参数见:slotToKeyFlushAsync
} else {
serverPanic("Wrong job type in bioProcessBackgroundJobs().");
}
zfree(job); //执行完释放任务
/* Lock again before reiterating the loop, if there are no longer
* jobs to process we'll block again in pthread_cond_wait(). */
pthread_mutex_lock(&bio_mutex[type]);
listDelNode(bio_jobs[type],ln);
bio_pending[type]--;
/* Unblock threads blocked on bioWaitStepOfType() if any. */
pthread_cond_broadcast(&bio_step_cond[type]);
}
}
/* Return the number of pending jobs of the specified type. */
unsigned long long bioPendingJobsOfType(int type) {
unsigned long long val;
pthread_mutex_lock(&bio_mutex[type]);
val = bio_pending[type];
pthread_mutex_unlock(&bio_mutex[type]);
return val;
}
// 目前看来redis 5.0也没有用到该方法
unsigned long long bioWaitStepOfType(int type) {
unsigned long long val;
pthread_mutex_lock(&bio_mutex[type]);
val = bio_pending[type];
if (val != 0) {
pthread_cond_wait(&bio_step_cond[type],&bio_mutex[type]);
val = bio_pending[type];
}
pthread_mutex_unlock(&bio_mutex[type]);
return val;
}
// 只有在进程奔溃收到SIGSEGV信号,才会执行该方法
void bioKillThreads(void) {
int err, j;
for (j = 0; j < BIO_NUM_OPS; j++) {
if (pthread_cancel(bio_threads[j]) == 0) {
if ((err = pthread_join(bio_threads[j],NULL)) != 0) {
serverLog(LL_WARNING,
"Bio thread for job type #%d can be joined: %s",
j, strerror(err));
} else {
serverLog(LL_WARNING,
"Bio thread for job type #%d terminated",j);
}
}
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论