排序:归并排序

发布于 2024-09-25 10:08:48 字数 3180 浏览 26 评论 0

归并排序的原理

归并排序的核心思想还是蛮简单的。如果想要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就有序了。

归并排序使用的是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。

从刚才的描述,可以发现分治思想跟我们前面讲的递归思想很像。是的,分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。

实现代码如下:

function mergeSort(arr) {
    let len = arr.length;
    if(len === 1) return arr;

    let mid = Math.floor(len / 2);
    let left = arr.slice(0, mid);
    let right = arr.slice(mid, len);

    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right) {
    let result = [];
    let l = 0;
    let r = 0;

    while(l < left.length && r < right.length) {
        if(left[l] <= right[r]) {
            result.push(left[l++])
        }else{
            result.push(right[r++])
        }
    }

    while(l < left.length) {
        result.push(left[l++])
    }

    while(r < right.length) {
        result.push(right[r++])
    }

    return result;
}

归并排序的性能分析

第一,归并排序是稳定的排序算法嘛?

归并排序稳不稳定关键要看 merge 函数,也就是两个有序字数组合并成一个有序数组的那部分代码。如果有左右两个数组有相等的元素,优先把左边的元素放入数组,保证顺序不变。因此,归并排序是一个稳定的排序算法。

第二,归并排序的时间复杂度是多少?

递归的适用场景是,一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。

如果我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b) 和 T( c),那我们就可以得到这样的递推关系式:

T(a) = T(b) + T(c) + K

其中 K 等于将两个子问题 b、c 的结果合并成问题 a 的结果所消耗的时间。

从刚刚的分析,我们可以得到一个重要的结论:

不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

套用这个公式,我们来分析一下归并排序的时间复杂度。

我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:

T(1) = C;   n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2*T(n/2) + n; n>1

通过这个公式,如何来求解 T(n) 呢?还不够直观?那我们再进一步分解一下计算过程。

T(n) = 2*T(n/2) + n
     = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
     = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
     = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n
     ......
     = 2^k * T(n/2^k) + k * n
     ......

通过这样一步一步分解推导,我们可以得到 T(n) = 2^kT(n/2^k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。

从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

第三,归并排序的空间复杂度是多少?

归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n2)。)但是,归并排序并没有像快排那样,应用广泛,这是为什么呢?因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。

这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。这一点你应该很容易理解。那我现在问你,归并排序的空间复杂度到底是多少呢?是 O(n),还是 O(nlogn),应该如何分析呢?

如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,这个思路对吗?

实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

关于作者

去了角落

暂无简介

0 文章
0 评论
22 人气
更多

推荐作者

謌踐踏愛綪

文章 0 评论 0

开始看清了

文章 0 评论 0

高速公鹿

文章 0 评论 0

alipaysp_PLnULTzf66

文章 0 评论 0

热情消退

文章 0 评论 0

白色月光

文章 0 评论 0

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文