LeetCode 334. 递增的三元子序列
给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。
示例 1:
输入: [1,2,3,4,5]
输出: true
示例 2:
输入: [5,4,3,2,1]
输出: false
前置知识
- 双指针
公司
- 百度
- 字节
思路
这道题是求解顺序数字是否有三个递增的排列, 注意这里没有要求连续的,因此诸如滑动窗口的思路是不可以的。
题目要求 O(n)的时间复杂度和 O(1)的空间复杂度,因此暴力的做法就不用考虑了。
我们的目标就是依次
找到三个数字,其顺序是递增的。
因此我们的做法可以是从左到右依次遍历,然后维护三个变量,分别记录最小值,第二小值,第三小值。只要我们能够填满这三个变量就返回 true,否则返回 false。
关键点解析
- 维护两个变量,分别记录最小值,第二小值。只要我们能够填满这三个变量就返回 true,否则返回 false
代码
代码支持: JS, Python3
JS Code:
/*
/**
* @param {number[]} nums
* @return {boolean}
*/
var increasingTriplet = function (nums) {
if (nums.length < 3) return false;
let n1 = Number.MAX_VALUE;
let n2 = Number.MAX_VALUE;
for (let i = 0; i < nums.length; i++) {
if (nums[i] <= n1) {
n1 = nums[i];
} else if (nums[i] <= n2) {
n2 = nums[i];
} else {
return true;
}
}
return false;
};
Python3 Code:
class Solution:
def increasingTriplet(self, A: List[int]) -> bool:
a1 = a2 = float("inf")
for a in A:
if a > a2:
return True
elif a > a1:
a2 = a
else:
a1 = a
return False
复杂度分析
- 时间复杂度:$O(N)$
- 空间复杂度:$O(1)$
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论