斐波那契数列

发布于 2022-04-30 12:19:04 字数 4968 浏览 1336 评论 0

题目1

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39

地址

https://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-rankingg

题目2

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

地址:https://www.nowcoder.com/practice/8c82a5b80378478f9484d87d1c5f12a4?tpId=13&tqId=11161&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-rankingg&tPage=1

分析:首先考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。

现在我们再来讨论一般情况。我们把n级台阶时的跳法看成是n的函数,记为f(n)。

  • 当n>2时,第一次跳的时候就有两种不同的选择:
  • 一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);
  • 另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)。

因此n级台阶时的不同跳法的总数f(n)=f(n-1)+f(n-2)。

我们把上面的分析用一个公式总结如下:

        /  1                             n = 1
f(n)=      2                             n = 2
        \  f(n-1) + f(n-2)               n > 2

那么,如果一个人上台阶可以一次上1个,2个,或者3个呢?这个时候,公式是这样写的:

        / 1                                      n = 1
f(n)=     2                                      n = 2
          4                                      n = 3       //111, 12, 21, 3
        \ f(n-1)+f(n-2)+f(n-3)                   n > 3

兔子繁殖问题

13世纪意大利数学家斐波那契在他的《算盘书》中提出这样一个问题:有人想知道一年内一对兔子可繁殖成多少对,便筑了一道围墙把一对兔子关在里面。已知一对兔子每一个月可以生一对小兔子,而一对兔子出生后.第三个月开始生小兔子假如一年内没有发生死亡,则一对兔子一年内能繁殖成多少对?

分析:这就是斐波那契数列的由来,本节的跳台阶问题便是此问题的变形,只是换了种表述形式。

题目3

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

地址: https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-rankingg&tPage=1

分析:

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

n=0, f(n) = 1;
n = 1, f(n) = 1;
n >=2, f(n) = 2 * f(n-1)

除了最后一级台阶必须要跳外,每级台阶都存在跳与不跳两种情况,所以共有2^(n-1)中跳法。

即数学问题, n个台阶最多有n-1个分段, 每个分段可以跳也可以不跳,所以有2的n-1次方

每个台阶可以看作一块木板,让青蛙跳上去,n个台阶就有n块木板,最后一块木板是青蛙到达的位子,必须存在,其他 (n-1) 块木板可以任意选择是否存在,则每个木板有存在和不存在两种选择,(n-1) 块木板 就有 [2^(n-1)] 种跳法,可以直接得到结果。

其实我们所要求的序列为:0,1,2,4,8,16,……
所以除了第一位外,其他位的数都是前一位的数去乘以2所得到的积。

题目4

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

地址: https://www.nowcoder.com/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-rankingg&tPage=1

分析:

第一种情况等价于情形1中阴影部分的n-1块矩形有多少种覆盖方法,为f(n-1);

第二种情况等价于情形2中阴影部分的n-2块矩形有多少种覆盖方法,为f(n-2);

故f(n) = f(n-1) + f(n-2),还是一个斐波那契数列。。。。

且f(1) = 1, f(2) = 2。

我们采用从能够简单到复杂的思路思考这个问题,
当n=1的时候,只有一个21的矩形,所以只有一种方法,记为f(1)=1;
当n=2的时候,是两个2
1的矩形,这时候具有两种方式去覆盖这个矩形了(这时候应该是一个正方形),一种是竖着放,一种是横着放,所以有两种方法,记为f(2)=2;
当n=3的时候,仍然只能采用横着放或者竖着放的方式去覆盖这个矩形,我们仍首先考虑使用竖着放的方式,当竖着放的时候,由于已经覆盖了左边(假设是从左边开始覆盖的,从右边的覆盖的效果是一样的)一个21的矩形,所以还有2个21的矩形,而这种情况我们已经在n=2的时候计算出来了,就是f(2);接下来我们考虑横着放的情况,由于是横着放,在水平方向已经覆盖了一个21的矩形,所以要想覆盖这由3个21组成的矩形,只能在水平方向的覆盖的那个矩形下面继续覆盖一个,那么只剩下一个2*1的矩形了,这也通过前面的分析计算出来了,就是f(1)。
综合以上分析,当n=3的时候,覆盖的方法是f(3)=f(1)+f(2)。

其他以此类推,我们发现这仍然是一个斐波那契数列。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

关于作者

JSmiles

生命进入颠沛而奔忙的本质状态,并将以不断告别和相遇的陈旧方式继续下去。

文章
评论
84963 人气
更多

推荐作者

微信用户

文章 0 评论 0

小情绪

文章 0 评论 0

ゞ记忆︶ㄣ

文章 0 评论 0

笨死的猪

文章 0 评论 0

彭明超

文章 0 评论 0

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文