LeetCode 873. 最长的斐波那契子序列的长度

发布于 2023-08-30 14:18:23 字数 2203 浏览 26 评论 0

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。

示例 2:

输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。

提示:

3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%

前置知识

  • 动态规划

公司

  • 暂无

思路

和一般的 DP 不同,这道题是已知状态转移方程。所以我勉强也归类到 DP 吧。

这道题的思路是两两枚举数组中的数字,不妨称其为 a 和 b。接下来,我们以 a 和 b 为斐波那契的起点, 很明显斐波那契数列的下一个数字应该是 a + b,这是题目给出的信息。

  • 如果 a + b 不在数组中,直接终止,继续枚举下一个。
  • 如果 a + b 在数组中,说明我们找到了一个长度为 3 的斐波那契子数列。那么继续尝试扩展斐波那契数列长度到 4。。。

上面的枚举需要 $O(n^2)$的时间复杂度,枚举过程记录最大长度并返回即可。

对于每次枚举,我们都需要不断重复检查 a + b 是否在数组中,直到不再数组中为止。因此最坏的情况是一直在数组中,这个时间复杂度大概是数组中最大值和最小值的差值的对数。用公式表示就是 $log(m1 - m2)$,其中 m1 为数组 最大值, m2 为数组最小值。

关键点

  • 使用集合存储数组中的所有数,然后枚举数组中的两两组合并,去集合中不断延伸斐波那契数列

代码

  • 语言支持:Python3

Python3 Code:


class Solution:
    def lenLongestFibSubseq(self, A: List[int]) -> int:
        s = set(A)
        ans = 0
        for i in range(len(A)):
            for j in range(i + 1, len(A)):
                a, b = A[j], A[i] + A[j]
                t = 2
                while b in s:
                    a, b = b, a + b
                    t += 1
                ans = max(ans, t)
        return 0 if ans < 3 else ans

复杂度分析

令 n 为数组长度, m1 为数组最大值,m2 为数组最小值。

  • 时间复杂度:$O(n^2log(m1-m2))$
  • 空间复杂度:$O(n)$

扩展

这道题还有时间复杂度更好的做法, 感兴趣的可以参考 力扣官方题解

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据

关于作者

涙—继续流

暂无简介

0 文章
0 评论
23 人气
更多

推荐作者

ni139999

文章 0 评论 0

Smile

文章 0 评论 0

木子李

文章 0 评论 0

仅此而已

文章 0 评论 0

qq_2gSKZM

文章 0 评论 0

内心激荡

文章 0 评论 0

    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文