golang 实现单机版 MapReduce
本篇文章主要描述了如何使用 golang 实现一个单机版的 MapReduce 程序,想法来自于 MIT-6.824 课程的一个 lab。本文分为以下几个模块:
- MapReduce 基本原理
- MapReduce 简单使用
- MapReduce 单机版实现
MapReduce 基本原理
MapReduce 的计算以一组 Key/Value 对为输入,然后输出一组 Key/Value 对,用户通过编写 Map 和 Reduce 函数来控制处理逻辑。
Map 函数把输入转换成一组中间的 Key/Value 对,MapReduce library 会把所有 Key 的中间结果传递给 Reduce 函数处理。
Reduce 函数接收 Key 和其对应的一组 Value,它的作用就是聚合这些 Value,产生最终的结果。Reduce 的输入是以迭代器的方式输入,使得 MapReduce 可以处理数据量比内存大的情况。
一次 MapReduce 的处理过程如下图:
- MapReduce library 会把输入文件划分成多个 16 到 64MB 大小的分片(大小可以通过参数调节),然后在一组机器上启动程序。
- 其中比较特殊的程序是 master,剩下的由 master 分配任务的程序叫 worker。总共有 M 个 map 任务和 R 个 reduce 任务需要分配,master 会选取空闲的 worker,然后分配一个 map 任务或者 reduce 任务。
- 处理 map 任务的 worker 会从输入分片读入数据,解析出输入数据的 K/V 对,然后传递给 Map 函数,生成的 K/V 中间结果会缓存在内存中。
- map 任务的中间结果会被周期性地写入到磁盘中,以 partition 函数来分成 R 个部分。R 个部分的磁盘地址会推送到 master,然后由它转发给响应的 reduce worker。
- 当 reduce worker 接收到 master 发送的地址信息时,它会通过 RPC 来向 map worker 读取对应的数据。当 reduce worker 读取到了所有的数据,它先按照 key 来排序,方便聚合操作。
- reduce worker 遍历排序好的中间结果,对于相同的 key,把其所有数据传入到 Reduce 函数进行处理,生成最终的结果会被追加到结果文件中。
- 当所有的 map 和 reduce 任务都完成时,master 会唤醒用户程序,然后返回到用户程序空间执行用户代码。
成功执行后,输出结果在 R 个文件中,通常,用户不需要合并这 R 个文件,因为,可以把它们作为新的 MapReduce 处理逻辑的输入数据,或者其它分布式应用的输入数据。更详细的介绍可以参考我之前写的博客 MapReduce 原理
MapReduce 核心组件
MapReduce 核心组件包括 Master 和 Worker,它们的职责分别如下。
Master
MapReduce 负责一次执行过程中 Map 和 Reduce 任务的调度,其需要维护的信息包括如下:
- worker 的状态
- 任务的状态
- Map 生成的文件的位置
Worker
Worker 分为两种,分别是 Map 和 Reduce:
Map Worker 的职责:
- 对分片数据调用用户指定的 Map 函数
- 根据 Reduce 的个数,把数据分成 R 份
Reduce Worker 的职责:
- 对收集到的数据进行排序
- 对于相同的 Key 调用 Reduce 函数进行处理
MapReduce 简单使用
了解 MapReduce 基本原理后,再来通过一个简单的 word count 例子,来描述 MapReduce 的使用方法,代码如下:
// The mapping function is called once for each piece of the input. // In this framework, the key is the name of the file that is being processed, // and the value is the file's contents. The return value should be a slice of // key/value pairs, each represented by a mapreduce.KeyValue. func mapF(document string, value string) (res []mapreduce.KeyValue) { // TODO: you have to write this function f := func(r rune) bool { return !unicode.IsLetter(r) } words := strings.FieldsFunc(value, f) for _, word := range words { kv := mapreduce.KeyValue{word, " "} res = append(res, kv) } return } // The reduce function is called once for each key generated by Map, with a // list of that key's string value (merged across all inputs). The return value // should be a single output value for that key. func reduceF(key string, values []string) string { // TODO: you also have to write this function s := strconv.Itoa(len(values)) return s } // Can be run in 3 ways: // 1) Sequential (e.g., go run wc.go master sequential x1.txt .. xN.txt) // 2) Master (e.g., go run wc.go master localhost:7777 x1.txt .. xN.txt) // 3) Worker (e.g., go run wc.go worker localhost:7777 localhost:7778 &) func main() { if len(os.Args) < 4 { fmt.Printf("%s: see usage comments in file\n", os.Args[0]) } else if os.Args[1] == "master" { var mr *mapreduce.Master if os.Args[2] == "sequential" { mr = mapreduce.Sequential("wcseq", os.Args[3:], 3, mapF, reduceF) } else { mr = mapreduce.Distributed("wcseq", os.Args[3:], 3, os.Args[2]) } mr.Wait() } else { mapreduce.RunWorker(os.Args[2], os.Args[3], mapF, reduceF, 100) } }
一个 MapReduce 程序由三个部分组成:
- Map 函数
- Reduce 函数
- 调用 MapReduce 执行的函数
Map 函数
Map 函数主要的功能为吐出 K/V 对
Reduce 函数
Reduce 函数则是对相同的 Key 做操作,一般是统计之类的功能,具体地看应用的需求。
调用 MapReduce 库函数
分为 Sequential 和 Distributed,其中 Sequential 为串行地执行 Map 和 Reduce 任务,主要用于用户程序调试的场景,Distributed 则用于真正的用户程序执行的场景。
MapReduce 单机版实现
本节实现的 MapReduce 单机版与 Google 论文中的 MapReduce 主要的不同如下:
- 输入和输出数据都采用本机的文件系统,没有使用到类似于 GFS 的分布式文件存储
- Google 的 MapReduce 通过 GFS 的文件名字的原子操作来保证 Reduce Worker 宕机时,最终只会生成一份结果文件;在单机文件系统中,如果 Worker 和 Master 之间网络通信断掉,但是 Worker 本身可能还在工 作,这时候如果重新启动另一个 Worker 可能会造成两个 Worker 写入同一份文件,这种场景,在单机版 MapReduce 的 Worker 容灾中不考 虑。
本节分为两个部分来讨论:
- MapReduce 的 Sequential 实现
- MapReduce 的 Distributed 实现(带 Worker 容灾)
MapReduce 的 Sequential 实现
Sequential 部分的调度程序实现如下:
// Sequential runs map and reduce tasks sequentially, waiting for each task to // complete before scheduling the next. func Sequential(jobName string, files []string, nreduce int, mapF func(string, string) []KeyValue, reduceF func(string, []string) string, ) (mr *Master) { mr = newMaster("master") go mr.run(jobName, files, nreduce, func(phase jobPhase) { switch phase { case mapPhase: for i, f := range mr.files { doMap(mr.jobName, i, f, mr.nReduce, mapF) } case reducePhase: for i := 0; i < mr.nReduce; i++ { doReduce(mr.jobName, i, len(mr.files), reduceF) } } }, func() { mr.stats = []int{len(files) + nreduce} }) return }
其逻辑非常简单,就是按照顺序先一个个的处理 Map 任务,处理完成之后,再一个个的处理 Reduce 任务。
接下来,看 doMap 和 doReduce 是如何实现的。
doMap 的实现如下:
// doMap does the job of a map worker: it reads one of the input files // (inFile), calls the user-defined map function (mapF) for that file's // contents, and partitions the output into nReduce intermediate files. func doMap( jobName string, // the name of the MapReduce job mapTaskNumber int, // which map task this is inFile string, nReduce int, // the number of reduce task that will be run ("R" in the paper) mapF func(file string, contents string) []KeyValue, ) { // TODO: // You will need to write this function. // You can find the filename for this map task's input to reduce task number // r using reduceName(jobName, mapTaskNumber, r). The ihash function (given // below doMap) should be used to decide which file a given key belongs into. // // The intermediate output of a map task is stored in the file // system as multiple files whose name indicates which map task produced // them, as well as which reduce task they are for. Coming up with a // scheme for how to store the key/value pairs on disk can be tricky, // especially when taking into account that both keys and values could // contain newlines, quotes, and any other character you can think of. // // One format often used for serializing data to a byte stream that the // other end can correctly reconstruct is JSON. You are not required to // use JSON, but as the output of the reduce tasks *must* be JSON, // familiarizing yourself with it here may prove useful. You can write // out a data structure as a JSON string to a file using the commented // code below. The corresponding decoding functions can be found in // common_reduce.go. // // enc := json.NewEncoder(file) // for _, kv := ... { // err := enc.Encode(&kv) // // Remember to close the file after you have written all the values!`` file, err := os.Open(inFile) if err != nil { log.Fatal(err) } defer file.Close() scanner := bufio.NewScanner(file) contents := "" for scanner.Scan() { s := scanner.Text() s += "\n" contents = contents + s } kvs := mapF(inFile, contents) reduceFileMap := make(map[string]*os.File) jsonFileMap := make(map[string]*json.Encoder) for i := 0; i < nReduce; i++ { reduceFileName := reduceName(jobName, mapTaskNumber, i) file, err := os.Create(reduceFileName) if err != nil { log.Fatal(err) } enc := json.NewEncoder(file) reduceFileMap[reduceFileName] = file jsonFileMap[reduceFileName] = enc defer reduceFileMap[reduceFileName].Close() } for _, kv := range kvs { hashValue := int(ihash(kv.Key)) fileNum := hashValue % nReduce reduceFileName := reduceName(jobName, mapTaskNumber, fileNum) enc, ok := jsonFileMap[reduceFileName] if !ok { log.Fatal(err) } err := enc.Encode(&kv) if err != nil { log.Fatal(err) } } }
处理过程如下:
- 读入输出文件
- 调用用户指定的 Map 函数,吐出所有的 K/V 对
- 创建跟 Reduce Worker 相同数量的文件,然后,对每个 K/V 对,根据 Key 来做 hash,输出到对应的文件
doReduce 实现如下:
// doReduce does the job of a reduce worker: it reads the intermediate // key/value pairs (produced by the map phase) for this task, sorts the // intermediate key/value pairs by key, calls the user-defined reduce function // (reduceF) for each key, and writes the output to disk. func doReduce( jobName string, // the name of the whole MapReduce job reduceTaskNumber int, // which reduce task this is nMap int, // the number of map tasks that were run ("M" in the paper) reduceF func(key string, values []string) string, ) { // TODO: // You will need to write this function. // You can find the intermediate file for this reduce task from map task number // m using reduceName(jobName, m, reduceTaskNumber). // Remember that you've encoded the values in the intermediate files, so you // will need to decode them. If you chose to use JSON, you can read out // multiple decoded values by creating a decoder, and then repeatedly calling // .Decode() on it until Decode() returns an error. // // You should write the reduced output in as JSON encoded KeyValue // objects to a file named mergeName(jobName, reduceTaskNumber). We require // you to use JSON here because that is what the merger than combines the // output from all the reduce tasks expects. There is nothing "special" about // JSON -- it is just the marshalling format we chose to use. It will look // something like this: // // enc := json.NewEncoder(mergeFile) // for key in ... { // enc.Encode(KeyValue{key, reduceF(...)}) // } // file.Close() kvs := make(map[string][]string) for i := 0; i < nMap; i++ { reduceFileName := reduceName(jobName, i, reduceTaskNumber) file, err := os.Open(reduceFileName) if err != nil { log.Fatal(err) } defer file.Close() enc := json.NewDecoder(file) for { var kv KeyValue if err := enc.Decode(&kv); err == io.EOF { break } else if err != nil { log.Fatal(err) } else { log.Println(kv.Key + kv.Value) kvs[kv.Key] = append(kvs[kv.Key], kv.Value) } } } var keys []string for k, _ := range kvs { keys = append(keys, k) } sort.Sort(sort.StringSlice(keys)) mergeFileName := mergeName(jobName, reduceTaskNumber) mergeFile, err := os.Create(mergeFileName) if err != nil { log.Fatal(err) } defer mergeFile.Close() enc := json.NewEncoder(mergeFile) for _, key := range keys { enc.Encode(KeyValue{key, reduceF(key, kvs[key])}) } }
Reduce 任务的处理逻辑如下:
- 根据之前约定好的命名格式,找到该 Reduce Worker 需要处理的文件,然后,按照约定的方式进行解码
- 得到所有的 K/V 对之后,根据 Key 对 K/V 对排序
- 调用用户指定的 ReduceF 函数,对相同的 Key 的所有 Value 进行处理
- 把处理后的结果以一定的编码方式写入文件
MapReduce 的 Distributed 实现(带 Worker 容灾)
Distributed 和 Sequencial 的主要区别在于调度函数的实现,如下
// schedule starts and waits for all tasks in the given phase (Map or Reduce). func (mr *Master) schedule(phase jobPhase) { var ntasks int var nios int // number of inputs (for reduce) or outputs (for map) switch phase { case mapPhase: ntasks = len(mr.files) nios = mr.nReduce case reducePhase: ntasks = mr.nReduce nios = len(mr.files) } fmt.Printf("Schedule: %v %v tasks (%d I/Os)\n", ntasks, phase, nios) // All ntasks tasks have to be scheduled on workers, and only once all of // them have been completed successfully should the function return. // Remember that workers may fail, and that any given worker may finish // multiple tasks. // // TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO // switch phase { case mapPhase: mr.scheduleMap() case reducePhase: mr.scheduleReduce() } fmt.Printf("Schedule: %v phase done\n", phase) }
分为 Map 和 Reduce 两阶段的调度,先来看 ScheduleMap 部分:
ScheduleMap
type taskStat struct { taskNumber int ok bool } func (mr *Master) checkWorkerExist(w string) bool { mr.Lock() defer mr.Unlock() for _, v := range mr.workers { if w == v { return true } } return false } func (mr *Master) chooseTask(failedTasks []int, nTaskIndex int) ([]int, int) { if 0 == len(failedTasks) { return failedTasks, nTaskIndex } else { fmt.Println("choose failed tasks") task := failedTasks[0] failedTasks = failedTasks[1:len(failedTasks)] fmt.Println("failedTasks", failedTasks) return failedTasks, task } } func (mr *Master) runMapTask(nTaskNumber int, w string, doneTask chan taskStat) { if nTaskNumber < len(mr.files) { var args DoTaskArgs args.JobName = mr.jobName args.File = mr.files[nTaskNumber] args.Phase = mapPhase args.TaskNumber = nTaskNumber args.NumOtherPhase = mr.nReduce go func() { ok := call(w, "Worker.DoTask", args, new(struct{})) var taskstat taskStat taskstat.taskNumber = args.TaskNumber taskstat.ok = ok if ok { doneTask <- taskstat fmt.Println("done task %d", args.TaskNumber) } else { doneTask <- taskstat fmt.Println("get failed task %d", args.TaskNumber) } }() } else { fmt.Printf("all tasks sent out") } } func (mr *Master) scheduleMap() { fmt.Println("begin scheduling map tasks") taskWorkerMap := make(map[int]string) doneTask := make(chan taskStat, 1) var nTaskIndex = 0 var failedTasks []int mr.Lock() var nInitTask = min(len(mr.files), len(mr.workers)) mr.Unlock() for ; nTaskIndex < nInitTask; nTaskIndex++ { mr.Lock() w := mr.workers[nTaskIndex] mr.Unlock() mr.runMapTask(nTaskIndex, w, doneTask) } for { select { case newWorker := <-mr.registerChannel: fmt.Println("New Worker register %s", newWorker) var nextTask int failedTasks, nextTask = mr.chooseTask(failedTasks, nTaskIndex) if nextTask < len(mr.files) { fmt.Println("nextTask %d, total %d", nextTask, len(mr.files)) mr.runMapTask(nextTask, newWorker, doneTask) taskWorkerMap[nextTask] = newWorker if nTaskIndex == nextTask { nTaskIndex++ } } case taskStat := <-doneTask: var w string taskNumber, ok := taskStat.taskNumber, taskStat.ok if !ok { failedTasks = append(failedTasks, taskNumber) } else { w = taskWorkerMap[taskNumber] delete(taskWorkerMap, taskNumber) } if mr.checkWorkerExist(w) { fmt.Println("failed task count, failed tasks", len(failedTasks), failedTasks) var nextTask int failedTasks, nextTask = mr.chooseTask(failedTasks, nTaskIndex) if nextTask < len(mr.files) { fmt.Println("failed task count, failed tasks", len(failedTasks), failedTasks) fmt.Println("nextTask %d, total %d", nextTask, len(mr.files)) mr.runMapTask(nextTask, w, doneTask) taskWorkerMap[nextTask] = w if nTaskIndex == nextTask { nTaskIndex++ } } } fmt.Println("task index %d, task number %d, map count", nTaskIndex, taskNumber, len(taskWorkerMap)) for k, v := range taskWorkerMap { fmt.Println("%s:%v", k, v) } if (nTaskIndex == len(mr.files)) && (0 == len(taskWorkerMap)) { fmt.Println("all tasks in mapPhase is done") return } } } }
- 先根据已注册的 Worker 数量,生成相应数量的 Map 任务,然后发送给 Worker 执行
- 接下来在,在 select 中处理两种事件:一是有新 Worker 注册的事件;二是之前调度的任务执行完成的事件
不带 Worker 容灾的处理:
处理新 Worker 注册的事件的方式为选择下一个要执行的任务,发送给新注册的 Worker 去执行。
处理调度完成的事件的方式为选择下个需要执行的任务,调度给刚刚完成执行任务的 Worker 执行。当所有的 Map 任务都处理完成后,表示 Map 阶段完成,退出调度。
带 Worker 容灾的处理:
Worker 容灾的处理逻辑为,当任务执行失败时,加入到执行失败的任务队列中,当发生上述两种事件时,先从失败的任务队列中拿下一个任务执行,只有当失败的任务队列为空时,才调度新的任务执行。
ScheduleReduce
ScheduleReduce 的实现如下
func (mr *Master) scheduleReduce() { fmt.Println("start scheduling reduce tasks") taskWorkerMap := make(map[int]string) doneTask := make(chan taskStat, 1) var failedTasks []int var nTaskIndex = 0 mr.Lock() var nInitTask = min(mr.nReduce, len(mr.workers)) mr.Unlock() for ; nTaskIndex < nInitTask; nTaskIndex++ { mr.Lock() w := mr.workers[nTaskIndex] mr.Unlock() taskWorkerMap[nTaskIndex] = w mr.runReduceTask(nTaskIndex, w, doneTask) } for { select { case newWorker := <-mr.registerChannel: fmt.Println("New Worker register %s", newWorker) var nextTask int failedTasks, nextTask = mr.chooseTask(failedTasks, nTaskIndex) if nextTask < mr.nReduce { fmt.Println("nextTask %d, total %d", nextTask, len(mr.files)) mr.runReduceTask(nextTask, newWorker, doneTask) taskWorkerMap[nextTask] = newWorker if nTaskIndex == nextTask { nTaskIndex++ } } case taskStat := <-doneTask: var w string taskNumber, ok := taskStat.taskNumber, taskStat.ok if !ok { failedTasks = append(failedTasks, taskNumber) } else { w = taskWorkerMap[taskNumber] delete(taskWorkerMap, taskNumber) } if mr.checkWorkerExist(w) { var nextTask int failedTasks, nextTask = mr.chooseTask(failedTasks, nTaskIndex) if nextTask < mr.nReduce { fmt.Println("nextTask %d, total %d", nextTask, len(mr.files)) mr.runReduceTask(nextTask, w, doneTask) taskWorkerMap[nextTask] = w if nTaskIndex == nextTask { nTaskIndex++ } } } fmt.Println("task index %d, task number %d, map count", nTaskIndex, taskNumber, len(taskWorkerMap)) for k, v := range taskWorkerMap { fmt.Println("%s:%v", k, v) } if (nTaskIndex == mr.nReduce) && (0 == len(taskWorkerMap)) { fmt.Println("all tasks in mapPhase is done") return } } } }
整体的处理逻辑和 ScheduleMap 类似,如下
- 先根据已注册的 Worker 数量,生成相应数量的 Reduce 任务,然后发送给 Worker 执行
- 接下来在,在 select 中处理两种事件:一是有新 Worker 注册的事件;二是之前调度的任务执行完成的事件
容灾过程也是类似的,不再赘述。
参考文献
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论