剑指 Offer - 07 - 斐波那契数列
题目
大家都知道斐波那契数列,现在要求输入一个整数 n,请你输出斐波那契数列的第 n 项(从 0 开始,第 0 项为 0)。n<=39
解析
经典的简单题。给出 5 种做法。
1、递归
public class Solution {
public int Fibonacci(int n) {
if (n < 1)
return 0;
if (n == 1 || n == 2)
return 1;
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
}
2、记忆化
public class Solution {
public int[] dp;
public int Fibonacci(int n) {
dp = new int[n + 1];
return rec(n);
}
public int rec(int n) {
if (n < 1)
return 0;
if (n == 1 || n == 2)
return 1;
if (dp[n] != 0)
return dp[n];
dp[n] = rec(n - 1) + rec(n - 2);
return dp[n];
}
}
3、递推(DP)
public class Solution {
public int Fibonacci(int n) {
if (n < 1)
return 0;
if (n == 1 || n == 2)
return 1;
int[] dp = new int[n + 1];
dp[1] = dp[2] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[i - 1] + dp[i - 2];
return dp[n];
}
}
4、滚动优化
上面的 dp[i]
只依赖于 dp[i-1]
和 dp[i-2]
,所以用 f1、f2
两个变量即可。
public class Solution {
public int Fibonacci(int n) {
if (n < 1)
return 0;
if (n == 1 || n == 2)
return 1;
int f1 = 1;
int f2 = 1;
int res = 0;
for (int i = 3; i <= n; i++) {
res = f1 + f2;
f1 = f2;
f2 = res;
}
return res;
}
}
5、利用矩阵快速幂
public class Solution {
static class Matrix {
public int row;
public int col;
public int[][] m;
public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}
static Matrix mul(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, b.col); //注意这里
for (int i = 0; i < a.row; i++) {
for (int j = 0; j < b.col; j++) {
for (int k = 0; k < a.col; k++)
c.m[i][j] = c.m[i][j] + a.m[i][k] * b.m[k][j];
}
}
return c;
}
static Matrix pow(Matrix a, int k) {
Matrix res = new Matrix(a.row, a.col); // 方阵
for (int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while (k > 0) {
if ((k & 1) != 0)
res = mul(res, a);
a = mul(a, a);
k >>= 1;
}
return res;
}
public int Fibonacci(int n) {
if (n < 1)
return 0;
if (n == 1 || n == 2)
return 1;
Matrix a = new Matrix(2, 2);
a.m[0][0] = a.m[0][1] = a.m[1][0] = 1;
a.m[1][1] = 0;
Matrix res = pow(a, n - 2); //此时列向量是 F1 = 1, F2 = 1
return res.m[0][0] + res.m[0][1];
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
上一篇: Vue 3.x Directive 指令
下一篇: 彻底找到 Tomcat 启动速度慢的元凶
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论