Horizontal Pod Autoscaler(HPA)控制器
在前面的课程中,我们已经可以实现通过手工执行 kubectl scale
命令实现 Pod 扩容或缩容,但是这显然不符合 Kubernetes 的定位目标--自动化、智能化。 Kubernetes 期望可以实现通过监测 Pod 的使用情况,实现 pod 数量的自动调整,于是就产生了 Horizontal Pod Autoscaler(HPA)这种控制器。
HPA 可以获取每个 Pod 利用率,然后和 HPA 中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现 Pod 的数量的调整。其实 HPA 与之前的 Deployment 一样,也属于一种 Kubernetes 资源对象,它通过追踪分析 RC 控制的所有目标 Pod 的负载变化情况,来确定是否需要针对性地调整目标 Pod 的副本数,这是 HPA 的实现原理。
接下来,我们来做一个实验
4.1 安装 metrics-server
metrics-server 可以用来收集集群中的资源使用情况
# 安装 git
[root@k8s-master01 ~]# yum install git -y
# 获取 metrics-server, 注意使用的版本
[root@k8s-master01 ~]# git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server
# 修改 deployment, 注意修改的是镜像和初始化参数
[root@k8s-master01 ~]# cd /root/metrics-server/deploy/1.8+/
[root@k8s-master01 1.8+]# vim metrics-server-deployment.yaml
按图中添加下面选项
hostNetwork: true
image: bigcoder/metrics-server-amd64:tagname
args:
- --kubelet-insecure-tls
- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP
上述 image 是由笔者备份到自己的 DockerHub 上,如果你的网络不好,也可以使用阿里云镜像:
registry.cn-shanghai.aliyuncs.com/bigcoder/metrics-server-amd64:v0.3.6
# 安装 metrics-server
[root@k8s-master01 1.8+]# kubectl apply -f ./
创建完成后,我们查看 kube-system
命名空间下的 Pod 是否启动成功:
# 使用 kubectl top node 查看资源使用情况
[root@k8s-master01 1.8+]# kubectl top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
k8s-master01 289m 14% 1582Mi 54%
k8s-node01 81m 4% 1195Mi 40%
k8s-node02 72m 3% 1211Mi 41%
[root@k8s-master01 1.8+]# kubectl top pod -n kube-system
NAME CPU(cores) MEMORY(bytes)
coredns-6955765f44-7ptsb 3m 9Mi
coredns-6955765f44-vcwr5 3m 8Mi
etcd-master 14m 145Mi
...
# 至此,metrics-server 安装完成
4.2 准备 Deployment 和 Service
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx
namespace: dev
spec:
strategy: # 策略
type: RollingUpdate # 滚动更新策略
replicas: 1
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
resources: # 资源配额
limits: # 限制资源(上限)
cpu: "1" # CPU 限制,单位是 core 数
requests: # 请求资源(下限)
cpu: "100m" # CPU 限制,单位是 core 数
# 创建 service
[root@k8s-master01 1.8+]# kubectl expose deployment nginx --type=NodePort --port=80 -n dev
# 查看
[root@k8s-master01 1.8+]# kubectl get deployment,pod,svc -n dev
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 1/1 1 1 47s
NAME READY STATUS RESTARTS AGE
pod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s
4.3 部署 HPA
创建 pc-hpa.yaml 文件,内容如下:
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: pc-hpa
namespace: dev
spec:
minReplicas: 1 #最小 pod 数量
maxReplicas: 10 #最大 pod 数量
targetCPUUtilizationPercentage: 3 # CPU 使用率指标
scaleTargetRef: # 指定要控制的 nginx 信息
apiVersion: apps/v1
kind: Deployment
name: nginx
# 创建 hpa
[root@k8s-master01 1.8+]# kubectl create -f pc-hpa.yaml
horizontalpodautoscaler.autoscaling/pc-hpa created
# 查看 hpa
[root@k8s-master01 1.8+]# kubectl get hpa -n dev
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
pc-hpa Deployment/nginx 0%/3% 1 10 1 62s
4.4 测试
使用压测工具对 service 地址 192.168.5.4:31830
进行压测,然后通过控制台查看 hpa 和 pod 的变化
hpa 变化:
[root@k8s-master01 ~]# kubectl get hpa -n dev -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
pc-hpa Deployment/nginx 0%/3% 1 10 1 4m11s
pc-hpa Deployment/nginx 0%/3% 1 10 1 5m19s
pc-hpa Deployment/nginx 22%/3% 1 10 1 6m50s
pc-hpa Deployment/nginx 22%/3% 1 10 4 7m5s
pc-hpa Deployment/nginx 22%/3% 1 10 8 7m21s
pc-hpa Deployment/nginx 6%/3% 1 10 8 7m51s
pc-hpa Deployment/nginx 0%/3% 1 10 8 9m6s
pc-hpa Deployment/nginx 0%/3% 1 10 8 13m
pc-hpa Deployment/nginx 0%/3% 1 10 1 14m
deployment 变化:
[root@k8s-master01 ~]# kubectl get deployment -n dev -w
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 11m
nginx 1/4 1 1 13m
nginx 1/4 1 1 13m
nginx 1/4 1 1 13m
nginx 1/4 4 1 13m
nginx 1/8 4 1 14m
nginx 1/8 4 1 14m
nginx 1/8 4 1 14m
nginx 1/8 8 1 14m
nginx 2/8 8 2 14m
nginx 3/8 8 3 14m
nginx 4/8 8 4 14m
nginx 5/8 8 5 14m
nginx 6/8 8 6 14m
nginx 7/8 8 7 14m
nginx 8/8 8 8 15m
nginx 8/1 8 8 20m
nginx 8/1 8 8 20m
nginx 1/1 1 1 20m
pod 变化:
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME READY STATUS RESTARTS AGE
nginx-7df9756ccc-bh8dr 1/1 Running 0 11m
nginx-7df9756ccc-cpgrv 0/1 Pending 0 0s
nginx-7df9756ccc-8zhwk 0/1 Pending 0 0s
nginx-7df9756ccc-rr9bn 0/1 Pending 0 0s
nginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-m9gsj 0/1 Pending 0 0s
nginx-7df9756ccc-g56qb 0/1 Pending 0 0s
nginx-7df9756ccc-sl9c6 0/1 Pending 0 0s
nginx-7df9756ccc-fgst7 0/1 Pending 0 0s
nginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0s
nginx-7df9756ccc-8zhwk 1/1 Running 0 19s
nginx-7df9756ccc-rr9bn 1/1 Running 0 30s
nginx-7df9756ccc-m9gsj 1/1 Running 0 21s
nginx-7df9756ccc-cpgrv 1/1 Running 0 47s
nginx-7df9756ccc-sl9c6 1/1 Running 0 33s
nginx-7df9756ccc-g56qb 1/1 Running 0 48s
nginx-7df9756ccc-fgst7 1/1 Running 0 66s
nginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50s
nginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5s
nginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5s
nginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50s
nginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5s
nginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50s
nginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

上一篇: Deployment 解决服务编排问题
下一篇: 谈谈自己对于 AOP 的了解
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论