返回介绍

solution / 2600-2699 / 2608.Shortest Cycle in a Graph / README

发布于 2024-06-17 01:03:02 字数 11316 浏览 0 评论 0 收藏 0

2608. 图中的最短环

English Version

题目描述

现有一个含 n 个顶点的 双向 图,每个顶点按从 0n - 1 标记。图中的边由二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 uivi 之间存在一条边。每对顶点最多通过一条边连接,并且不存在与自身相连的顶点。

返回图中 最短 环的长度。如果不存在环,则返回 -1

是指以同一节点开始和结束,并且路径中的每条边仅使用一次。

 

示例 1:

输入:n = 7, edges = [[0,1],[1,2],[2,0],[3,4],[4,5],[5,6],[6,3]]
输出:3
解释:长度最小的循环是:0 -> 1 -> 2 -> 0 

示例 2:

输入:n = 4, edges = [[0,1],[0,2]]
输出:-1
解释:图中不存在循环

 

提示:

  • 2 <= n <= 1000
  • 1 <= edges.length <= 1000
  • edges[i].length == 2
  • 0 <= ui, vi < n
  • ui != vi
  • 不存在重复的边

解法

方法一:枚举删除的边 + BFS

我们先根据数组 $edges$ 构建出邻接表 $g$,其中 $g[u]$ 表示顶点 $u$ 的所有邻接点。

接下来,我们枚举双向边 $(u, v)$,如果删除该边后,从顶点 $u$ 到顶点 $v$ 的路径依然存在,则包含该边的最短环的长度为 $dist[v] + 1$,其中 $dist[v]$ 表示从顶点 $u$ 到顶点 $v$ 的最短路径长度。我们取所有这样的环的最小值即可。

时间复杂度 $O(m^2)$,空间复杂度 $O(m + n)$。其中 $m$ 和 $n$ 分别为数组 $edges$ 的长度以及顶点数。

class Solution:
  def findShortestCycle(self, n: int, edges: List[List[int]]) -> int:
    def bfs(u: int, v: int) -> int:
      dist = [inf] * n
      dist[u] = 0
      q = deque([u])
      while q:
        i = q.popleft()
        for j in g[i]:
          if (i, j) != (u, v) and (j, i) != (u, v) and dist[j] == inf:
            dist[j] = dist[i] + 1
            q.append(j)
      return dist[v] + 1

    g = defaultdict(set)
    for u, v in edges:
      g[u].add(v)
      g[v].add(u)
    ans = min(bfs(u, v) for u, v in edges)
    return ans if ans < inf else -1
class Solution {
  private List<Integer>[] g;
  private final int inf = 1 << 30;

  public int findShortestCycle(int n, int[][] edges) {
    g = new List[n];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (var e : edges) {
      int u = e[0], v = e[1];
      g[u].add(v);
      g[v].add(u);
    }
    int ans = inf;
    for (var e : edges) {
      int u = e[0], v = e[1];
      ans = Math.min(ans, bfs(u, v));
    }
    return ans < inf ? ans : -1;
  }

  private int bfs(int u, int v) {
    int[] dist = new int[g.length];
    Arrays.fill(dist, inf);
    dist[u] = 0;
    Deque<Integer> q = new ArrayDeque<>();
    q.offer(u);
    while (!q.isEmpty()) {
      int i = q.poll();
      for (int j : g[i]) {
        if ((i == u && j == v) || (i == v && j == u) || dist[j] != inf) {
          continue;
        }
        dist[j] = dist[i] + 1;
        q.offer(j);
      }
    }
    return dist[v] + 1;
  }
}
class Solution {
public:
  int findShortestCycle(int n, vector<vector<int>>& edges) {
    vector<vector<int>> g(n);
    for (auto& e : edges) {
      int u = e[0], v = e[1];
      g[u].push_back(v);
      g[v].push_back(u);
    }
    const int inf = 1 << 30;
    auto bfs = [&](int u, int v) -> int {
      int dist[n];
      fill(dist, dist + n, inf);
      dist[u] = 0;
      queue<int> q{{u}};
      while (!q.empty()) {
        int i = q.front();
        q.pop();
        for (int j : g[i]) {
          if ((i == u && j == v) || (i == v && j == u) || dist[j] != inf) {
            continue;
          }
          dist[j] = dist[i] + 1;
          q.push(j);
        }
      }
      return dist[v] + 1;
    };
    int ans = inf;
    for (auto& e : edges) {
      int u = e[0], v = e[1];
      ans = min(ans, bfs(u, v));
    }
    return ans < inf ? ans : -1;
  }
};
func findShortestCycle(n int, edges [][]int) int {
  g := make([][]int, n)
  for _, e := range edges {
    u, v := e[0], e[1]
    g[u] = append(g[u], v)
    g[v] = append(g[v], u)
  }
  const inf = 1 << 30
  bfs := func(u, v int) int {
    dist := make([]int, n)
    for i := range dist {
      dist[i] = inf
    }
    dist[u] = 0
    q := []int{u}
    for len(q) > 0 {
      i := q[0]
      q = q[1:]
      for _, j := range g[i] {
        if (i == u && j == v) || (i == v && j == u) || dist[j] != inf {
          continue
        }
        dist[j] = dist[i] + 1
        q = append(q, j)
      }
    }
    return dist[v] + 1
  }
  ans := inf
  for _, e := range edges {
    u, v := e[0], e[1]
    ans = min(ans, bfs(u, v))
  }
  if ans < inf {
    return ans
  }
  return -1
}
function findShortestCycle(n: number, edges: number[][]): number {
  const g: number[][] = new Array(n).fill(0).map(() => []);
  for (const [u, v] of edges) {
    g[u].push(v);
    g[v].push(u);
  }
  const inf = 1 << 30;
  let ans = inf;
  const bfs = (u: number, v: number) => {
    const dist: number[] = new Array(n).fill(inf);
    dist[u] = 0;
    const q: number[] = [u];
    while (q.length) {
      const i = q.shift()!;
      for (const j of g[i]) {
        if ((i == u && j == v) || (i == v && j == u) || dist[j] != inf) {
          continue;
        }
        dist[j] = dist[i] + 1;
        q.push(j);
      }
    }
    return 1 + dist[v];
  };
  for (const [u, v] of edges) {
    ans = Math.min(ans, bfs(u, v));
  }
  return ans < inf ? ans : -1;
}

方法二:枚举点 + BFS

与方法一类似,我们先根据数组 $edges$ 构建出邻接表 $g$,其中 $g[u]$ 表示顶点 $u$ 的所有邻接点。

接下来,我们枚举顶点 $u$,如果从顶点 $u$ 出发,有两条路径都到达了顶点 $v$,说明当前找到了一个环,长度为两条路径的长度之和。我们取所有这样的环的最小值即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m + n)$。其中 $m$ 和 $n$ 分别为数组 $edges$ 的长度以及顶点数。

class Solution:
  def findShortestCycle(self, n: int, edges: List[List[int]]) -> int:
    def bfs(u: int) -> int:
      dist = [-1] * n
      dist[u] = 0
      q = deque([(u, -1)])
      ans = inf
      while q:
        u, fa = q.popleft()
        for v in g[u]:
          if dist[v] < 0:
            dist[v] = dist[u] + 1
            q.append((v, u))
          elif v != fa:
            ans = min(ans, dist[u] + dist[v] + 1)
      return ans

    g = defaultdict(list)
    for u, v in edges:
      g[u].append(v)
      g[v].append(u)
    ans = min(bfs(i) for i in range(n))
    return ans if ans < inf else -1
class Solution {
  private List<Integer>[] g;
  private final int inf = 1 << 30;

  public int findShortestCycle(int n, int[][] edges) {
    g = new List[n];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (var e : edges) {
      int u = e[0], v = e[1];
      g[u].add(v);
      g[v].add(u);
    }
    int ans = inf;
    for (int i = 0; i < n; ++i) {
      ans = Math.min(ans, bfs(i));
    }
    return ans < inf ? ans : -1;
  }

  private int bfs(int u) {
    int[] dist = new int[g.length];
    Arrays.fill(dist, -1);
    dist[u] = 0;
    Deque<int[]> q = new ArrayDeque<>();
    q.offer(new int[] {u, -1});
    int ans = inf;
    while (!q.isEmpty()) {
      var p = q.poll();
      u = p[0];
      int fa = p[1];
      for (int v : g[u]) {
        if (dist[v] < 0) {
          dist[v] = dist[u] + 1;
          q.offer(new int[] {v, u});
        } else if (v != fa) {
          ans = Math.min(ans, dist[u] + dist[v] + 1);
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  int findShortestCycle(int n, vector<vector<int>>& edges) {
    vector<vector<int>> g(n);
    for (auto& e : edges) {
      int u = e[0], v = e[1];
      g[u].push_back(v);
      g[v].push_back(u);
    }
    const int inf = 1 << 30;
    auto bfs = [&](int u) -> int {
      int dist[n];
      memset(dist, -1, sizeof(dist));
      dist[u] = 0;
      queue<pair<int, int>> q;
      q.emplace(u, -1);
      int ans = inf;
      while (!q.empty()) {
        auto p = q.front();
        u = p.first;
        int fa = p.second;
        q.pop();
        for (int v : g[u]) {
          if (dist[v] < 0) {
            dist[v] = dist[u] + 1;
            q.emplace(v, u);
          } else if (v != fa) {
            ans = min(ans, dist[u] + dist[v] + 1);
          }
        }
      }
      return ans;
    };
    int ans = inf;
    for (int i = 0; i < n; ++i) {
      ans = min(ans, bfs(i));
    }
    return ans < inf ? ans : -1;
  }
};
func findShortestCycle(n int, edges [][]int) int {
  g := make([][]int, n)
  for _, e := range edges {
    u, v := e[0], e[1]
    g[u] = append(g[u], v)
    g[v] = append(g[v], u)
  }
  const inf = 1 << 30
  bfs := func(u int) int {
    dist := make([]int, n)
    for i := range dist {
      dist[i] = -1
    }
    dist[u] = 0
    q := [][2]int{{u, -1}}
    ans := inf
    for len(q) > 0 {
      p := q[0]
      u = p[0]
      fa := p[1]
      q = q[1:]
      for _, v := range g[u] {
        if dist[v] < 0 {
          dist[v] = dist[u] + 1
          q = append(q, [2]int{v, u})
        } else if v != fa {
          ans = min(ans, dist[u]+dist[v]+1)
        }
      }
    }
    return ans
  }
  ans := inf
  for i := 0; i < n; i++ {
    ans = min(ans, bfs(i))
  }
  if ans < inf {
    return ans
  }
  return -1
}
function findShortestCycle(n: number, edges: number[][]): number {
  const g: number[][] = new Array(n).fill(0).map(() => []);
  for (const [u, v] of edges) {
    g[u].push(v);
    g[v].push(u);
  }
  const inf = 1 << 30;
  let ans = inf;
  const bfs = (u: number) => {
    const dist: number[] = new Array(n).fill(-1);
    dist[u] = 0;
    const q: number[][] = [[u, -1]];
    let ans = inf;
    while (q.length) {
      const p = q.shift()!;
      u = p[0];
      const fa = p[1];
      for (const v of g[u]) {
        if (dist[v] < 0) {
          dist[v] = dist[u] + 1;
          q.push([v, u]);
        } else if (v !== fa) {
          ans = Math.min(ans, dist[u] + dist[v] + 1);
        }
      }
    }
    return ans;
  };
  for (let i = 0; i < n; ++i) {
    ans = Math.min(ans, bfs(i));
  }
  return ans < inf ? ans : -1;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文